Citation: | FAN Yongdong, JIN Yan, LIN Botao, et al. Prediction and optimization of ROP assisted by adjacent well data based on geological and engineering driving [J]. Petroleum Drilling Techniques, 2025, 53(1):31−40. DOI: 10.11911/syztjs.2024110 |
The main lithology of the Shahejie Formation reservoir in the central Bohai Sea is mudstone and dark sandy mudstone, and the rate of penetration (ROP) is generally low when drilling through this reservoir, significantly influencing the drilling cycle and costs. To address this issue, a ROP prediction and optimization model integrating geology and engineering was proposed. This model consisted of two parts: ROP prediction and ROP optimization. The ROP prediction leveraged geological and engineering data to establish an ROP prediction model of the drilled well assisted by adjacent well data. After completing the ROP prediction, a feature contribution coefficient was defined to quantify the influence of different feature parameters on the final result. This feature contribution coefficient allowed for both an interpretation of the predicted results and the identification of controllable parameters that significantly affect ROP. For these controllable parameters, the ROP optimization model used a grid search optimization algorithm to explore the optimal parameter combination, thereby improving ROP. The ROP optimization results based on this model show that the ROP of the test well increases by 6.34% on average, with the three parameters contributing most to the prediction results being gamma values, weight on bit, and bit drilling time. This model effectively integrates geological and engineering parameters, achieving high-accuracy ROP predictions and substantial ROP improvements and providing valuable guidance for ROP enhancement in two development wells where it has been applied.
[1] |
REN Jun, JIANG Jie, ZHOU Changchun, et al. Research on adaptive feature optimization and drilling rate prediction based on real-time data[J]. Geoenergy Science and Engineering, 2024, 242: 213247. doi: 10.1016/j.geoen.2024.213247
|
[2] |
SONG Zehua, SONG Yu, YANG Jin, et al. A multi-objective reinforcement learning framework for real-time drilling optimization based on symbolic regression and perception[J]. Geoenergy Science and Engineering, 2025, 244: 213392. doi: 10.1016/j.geoen.2024.213392
|
[3] |
HEGDE C, MILLWATER H, PYRCZ M, et al. Rate of penetration (ROP) optimization in drilling with vibration control[J]. Journal of Natural Gas Science and Engineering, 2019, 67: 71–81.
|
[4] |
ZHANG Heng, NI Hongjian, WANG Zizhen, et al. Optimization and application study on targeted formation ROP enhancement with impact drilling modes based on clustering characteristics of logging[J]. Energy Reports, 2020, 6: 2903–2912. doi: 10.1016/j.egyr.2020.10.020
|
[5] |
甘超. 复杂地层可钻性场智能建模与钻速优化[D]. 武汉:中国地质大学(武汉),2019:1−49.
GAN Chao. Intelligent modeling of formation drillability field and drilling rate of penetration optimization in complex conditions[D]. Wuhan: China University of Geosciences(Wuhan), 2019: 1−49.
|
[6] |
WARREN T M. Penetration-rate performance of roller-cone bits[J]. SPE Drilling Engineering, 1987, 2(1): 9–18. doi: 10.2118/13259-PA
|
[7] |
BOURGOYNE A T, Jr, YOUNG F S, Jr. A multiple regression approach to optimal drilling and abnormal pressure detection[J]. SPE Journal, 1974, 14(4): 371–384.
|
[8] |
ALALI A M, ABUGHABAN M F, AMAN B M, et al. Hybrid data driven drilling and rate of penetration optimization[J]. Journal of Petroleum Science and Engineering, 2021, 200: 108075. doi: 10.1016/j.petrol.2020.108075
|
[9] |
刘军波,韦红术,赵景芳,等. 考虑钻头转速影响的新三维钻速方程[J]. 石油钻探技术,2015,43(1):52–57.
LIU Junbo, WEI Hongshu, ZHAO Jingfang, et al. A new 3D ROP equation considering the rotary speed of bit[J]. Petroleum Drilling Techniques, 2015, 43(1): 52–57.
|
[10] |
BRENJKAR E, DELIJANI E B. Computational prediction of the drilling rate of penetration (ROP): A comparison of various machine learning approaches and traditional models[J]. Journal of Petroleum Science and Engineering, 2022, 210: 110033.
|
[11] |
MAURER W C. The “perfect-cleaning” theory of rotary drilling[J]. Journal of Petroleum Technology, 1962, 14(11): 1270–1274. doi: 10.2118/408-PA
|
[12] |
BINGHAM M G. A new approach to interpreting-rock drillability[M]. Tulsa: Petroleum Publishing Company, 1965: 36−49.
|
[13] |
CHEN Xuyue, WENG Chengkai, DU Xu, et al. Prediction of the rate of penetration in offshore large-scale cluster extended reach wells drilling based on machine learning and big-data techniques[J]. Ocean Engineering, 2023, 285(part 2): 115404.
|
[14] |
ABDULMALEK A S, SALAHELDIN E, ABDULAZEEZ A, et al. Prediction of rate of penetration of deep and tight formation using support vector machine[R]. SPE 192316, 2018.
|
[15] |
刘胜娃,孙俊明,高翔,等. 基于人工神经网络的钻井机械钻速预测模型的分析与建立[J]. 计算机科学,2019,46(增刊1):605–608.
LIU Shengwa, SUN Junming, GAO Xiang, et al. Analysis and establishment of drilling speed prediction model for drilling machinery based on artificial neural networks[J]. Computer Science, 2019, 46(supplement 1): 605–608.
|
[16] |
GAN Chao, WANG Xiang, WANG Luzhao, et al. Multi-source information fusion-based dynamic model for online prediction of rate of penetration (ROP) in drilling process[J]. Geoenergy Science and Engineering, 2023, 230: 212187. doi: 10.1016/j.geoen.2023.212187
|
[17] |
OYEDERE M, GRAY K. ROP and TOB optimization using machine learning classification algorithms[J]. Journal of Natural Gas Science and Engineering, 2020, 77: 103230. doi: 10.1016/j.jngse.2020.103230
|
[18] |
黄小龙,刘东涛,宋吉明,等. 基于大数据及人工智能的钻速实时优化技术[J]. 石油钻采工艺,2021,43(4):442–448.
HUANG Xiaolong, LIU Dongtao, SONG Jiming, et al. Real-time ROP optimization technology based on big data and artificial intelligence[J]. Oil Drilling & Production Technology, 2021, 43(4): 442–448.
|
[19] |
赵颖,孙挺,杨进,等. 基于极限学习机的海上钻井机械钻速监测及实时优化[J]. 中国海上油气,2019,31(6):138–142.
ZHAO Ying, SUN Ting, YANG Jin, et al. Extreme learning machine-based offshore drilling ROP monitoring and real-time optimization[J]. China Offshore Oil and Gas, 2019, 31(6): 138–142.
|
[20] |
李根生,宋先知,祝兆鹏,等. 智能钻完井技术研究进展与前景展望[J]. 石油钻探技术,2023,51(4):35–47. doi: 10.11911/syztjs.2023040
LI Gensheng, SONG Xianzhi, ZHU Zhaopeng, et al. Research progress and the prospect of intelligent drilling and completion technologies[J]. Petroleum Drilling Techniques, 2023, 51(4): 35–47. doi: 10.11911/syztjs.2023040
|
1. |
史配铭,刘召友,荣芳,武宏超,米博超,念富龙. 超深探井荔参1井钻井关键技术. 石油工业技术监督. 2024(02): 50-55 .
![]() | |
2. |
佘朝毅. 四川盆地深层页岩气钻井关键技术新进展及发展展望. 天然气工业. 2024(03): 1-9 .
![]() | |
3. |
纪慧,李军,杨宏伟,柳贡慧,关立臣. 底部钻具组合力学性能分析及优化. 石油机械. 2024(06): 20-28 .
![]() | |
4. |
何新星,严焱诚,朱礼平,王希勇,朱化蜀,王治国. 四川盆地威荣深层页岩气安全与提速钻井技术. 石油实验地质. 2024(03): 630-637 .
![]() | |
5. |
宋先知,姚学喆,许争鸣,周蒙蒙,王庆辰. 超深井控温钻井隔热涂层参数影响机制研究. 石油钻探技术. 2024(02): 126-135 .
![]() | |
6. |
张敏,程丙方,严佳佳,曹立明,王鑫,刘胜华,丁群洋. 复兴地区页岩油优快钻井技术. 石油地质与工程. 2024(04): 120-126 .
![]() | |
7. |
王治国,严焱诚,黄河淳,罗成波. 井研-犍为地区难钻地层钻头优选及应用. 科技和产业. 2024(16): 194-198 .
![]() | |
8. |
刘志尧,管彬,刘佳林,卢秀德,方福君,李剑秋. 深层页岩气连续油管钻磨桥塞技术. 油气井测试. 2024(04): 17-22 .
![]() | |
9. |
Yaoran Wei,Yongcun Feng,Zhenlai Tan,Tianyu Yang,Shuang Yan,Xiaorong Li,Jingen Deng. Simultaneously improving ROP and maintaining wellbore stability in shale gas well:A case study of Luzhou shale gas reservoirs. Rock Mechanics Bulletin. 2024(03): 91-103 .
![]() |
|
10. |
唐霞. 营探1井超深井安全钻井关键技术. 石油工业技术监督. 2024(11): 55-59+65 .
![]() | |
11. |
李涛,杨哲,徐卫强,阳强,杨兆亮. 泸州区块深层页岩气水平井优快钻井技术. 石油钻探技术. 2023(01): 16-21 .
![]() | |
12. |
何冠羲,姜洪斌,梁悦,杨扬,韩龙. 表面活性剂提高页岩气井固井水泥浆的抗污染性能评价. 油田化学. 2023(01): 32-38 .
![]() | |
13. |
李兴财. 川渝深层页岩气水平井钻完井提速提效技术集成研究与应用. 内蒙古石油化工. 2023(01): 86-89 .
![]() | |
14. |
刘修刚,姜在炳,王毅,李浩哲,庞涛. 赵固一矿区域地面水平注浆钻井关键技术. 煤炭技术. 2023(06): 38-40 .
![]() | |
15. |
赵文彬,宋文豪. 永川黄202区块页岩气水平井钻井提速对策分析. 天然气勘探与开发. 2023(02): 127-134 .
![]() | |
16. |
赵靖影,邓小卫,杨天宇,廖伟,谭桢来,魏耀冉. 泸州深层页岩气钻井井壁失稳机理及主控因素分析. 石化技术. 2023(11): 116-119+160 .
![]() | |
17. |
张震,万秀梅,吴鹏程,李郑涛,文莉. 川南龙马溪组深层页岩井壁失稳原因分析及对策. 特种油气藏. 2022(01): 160-168 .
![]() | |
18. |
王文刚,胡大梁,欧彪,房舟,刘磊. 井研–犍为地区缝洞型复杂地层钻井关键技术. 石油钻探技术. 2022(02): 58-63 .
![]() | |
19. |
贾佳,夏忠跃,冯雷,李建,王烊. 鄂尔多斯盆地神府区块小井眼优快钻井关键技术. 石油钻探技术. 2022(02): 64-70 .
![]() | |
20. |
贾利春,李枝林,张继川,陶怀志,李雷,黄崇君,魏萧. 川南海相深层页岩气水平井钻井关键技术与实践. 石油钻采工艺. 2022(02): 145-152 .
![]() | |
21. |
李奎. 泸州深层页岩气水平段钻井提速关键技术. 钻探工程. 2022(05): 100-105 .
![]() | |
22. |
李奎. 泸州深层页岩气呼吸性地层井漏堵漏方法及对策分析——以Y101H3-4井为例. 钻探工程. 2022(05): 106-110 .
![]() | |
23. |
杜焕福,董佑桓,侯文辉,王春伟,孙鑫,杜淑艳,叶应贵. 定测录导一体化在提升水平井储层钻遇率中的应用. 中国地质调查. 2022(06): 1-9 .
![]() |