Citation: | ZHANG Peizhi. Synthesis and viscosity reduction mechanism of polyether viscosity reducer for heavy oil [J]. Petroleum Drilling Techniques, 2025, 53(1):102−107. DOI: 10.11911/syztjs.2024106 |
The traditional viscosity reducer has low stirring strength in the process of auxiliary heavy oil lifting, and it fails to be fully mixed with the produced liquid, leading to a poor on-site application effect. To solve this problem, a polyether viscosity reducer for heavy oil (MSN) was synthesized with styrene, maleic anhydride, and nonylphenol polyoxyethylene ether as main raw materials, and its viscosity reduction performance was investigated by laboratory tests. The viscosity reduction mechanism was discussed. The results show that MSN can achieve a viscosity reduction rate of 95.6% under the condition of stirring at 50 r/min for 1 min and can still maintain a viscosity reduction rate of 87.2% after 24 h. It also shows strong viscosity reduction ability and viscosity reduction stability under low stirring intensity. Scanning electron microscope (SEM) is used to observe the morphology of colloid and asphaltene before and after the addition of MSN and results show that the addition of MSN significantly disperses the original agglomerated structure of colloid and asphaltene. The analysis finds that MSN reduces the interaction between colloid and asphaltene molecules in heavy oil through dispersion and prevents them from forming a colloidal stable structure, so as to achieve the purpose of viscosity reduction in heavy oil. The successful development of viscosity reducer MSN provides technical support for the efficient development of heavy oil.
[1] |
崔青,张长桥,修建新,等. 稠油沥青质胶质降粘机理的分子动力学模拟[J]. 山东大学学报(工学版),2017,47(2):123–130.
CUI Qing, ZHANG Changqiao, XIU Jianxin, et al. Molecular dynamic simulation on the mechanism of viscosity reduction to asphaltene and resin in heavy oil[J]. Journal of Shandong University(Engineering Science), 2017, 47(2): 123–130.
|
[2] |
ZHOU Xiaodong, DONG Mingzhe, MAINI B. The dominant mechanism of enhanced heavy oil recovery by chemical flooding in a two-dimensional physical model[J]. Fuel, 2013, 108: 261–268. doi: 10.1016/j.fuel.2013.02.012
|
[3] |
展学成,马好文,王斌,等. 稠油黏度影响因素研究进展[J]. 石油化工,2019,48(2):222–226. doi: 10.3969/j.issn.1000-8144.2019.02.020
ZHAN Xuecheng, MA Haowen, WANG Bin, et al. Review of influencing factors of viscosity of heavy oil[J]. Petrochemical Technology, 2019, 48(2): 222–226. doi: 10.3969/j.issn.1000-8144.2019.02.020
|
[4] |
WU Zhengbin, LIU Huiqing, WANG Xue, et al. Emulsification and improved oil recovery with viscosity reducer during steam injection process for heavy oil[J]. Journal of Industrial and Engineering Chemistry, 2018, 61: 348–355. doi: 10.1016/j.jiec.2017.12.033
|
[5] |
陈宁宁,宋立新,郑云重,等. 新型聚合油溶性稠油降粘剂的合成及性能研究[J]. 化学试剂,2017,39(2):134–136.
CHEN Ningning, SONG Lixin, ZHENG Yunchong, et al. Synthetic and properties research of a novel viscosity reducer of oil-soluble polymers[J]. Journal of Chemical Reagents, 2017, 39(2): 134–136.
|
[6] |
杨兆臣,鲁雪梅,代纯川,等. 树枝型油溶性稠油降粘剂的研制[J]. 应用化工,2015,44(10):1909–1912.
YANG Zhaochen, LU Xuemei, DAI Chunchuan, et al. The study of dendritic oil-soluble viscosity reducer for heavy oil[J]. Applied Chemical Industry, 2015, 44(10): 1909–1912.
|
[7] |
王大威,张健,吕鑫,等. 双子表面活性剂对海上S油田稠油降粘性能评价[J]. 油气地质与采收率,2015,22(4):109–113. doi: 10.3969/j.issn.1009-9603.2015.04.020
WANG Dawei, ZHANG Jian, LYU Xin, et al. Evaluation of Gemini surfactant for viscosity reduction of heavy oil in offshore S Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(4): 109–113. doi: 10.3969/j.issn.1009-9603.2015.04.020
|
[8] |
王大喜,杜永顺,陈秋芬. 全氟聚醚酰胺磺酸钠稠油降粘剂的合成和表面活性[J]. 石油学报(石油加工),2004,20(4):56–60. doi: 10.3969/j.issn.1001-8719.2004.04.010
WANG Daxi, DU Yongshun, CHEN Qiufen. Synthesis and surface activity of perfluoropolyether-sulfonate viscosity reducer[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2004, 20(4): 56–60. doi: 10.3969/j.issn.1001-8719.2004.04.010
|
[9] |
杨服民,王惠敏,底国彬. HRV-2稠油降粘剂的研制与评价[J]. 石油钻采工艺,1996,18(3):93–96.
YANG Fumin, WANG Huimin, DI Guobin. Development and evaluation of HRV-2 thinner for heavy crude oil[J]. Oil Drilling and Production Technology, 1996, 18(3): 93–96.
|
[10] |
薛建泉,刘均荣,高庆贤. 稠油井空心杆泵上掺稀油降粘举升工艺设计[J]. 石油钻探技术,2006,34(5):70–72. doi: 10.3969/j.issn.1001-0890.2006.05.020
XUE Jianquan, LIU Junrong, GAO Qingxian. A Lifting technological design for viscosity break by mixing light hydrocarbon in hollow rod in heavy oil well[J]. Petroleum Drilling Techniques, 2006, 34(5): 70–72. doi: 10.3969/j.issn.1001-0890.2006.05.020
|
[11] |
吕柏林,马鹏,卢迎波,等. 风城浅层超稠油油藏原位催化改质降黏技术[J]. 石油钻采工艺,2023,45(5):632–637.
LYU Bailin, MA Peng, LU Yingbo, et al. In-situ catalytic modification and viscosity reduction technology in shallow ultra-heavy oil reservoirs in Fengcheng[J]. Oil Drilling & Production Technology, 2023, 45(5): 632–637.
|
[12] |
杜安琪,毛金成,王鼎立,等. 中深层稠油化学降黏技术研究进展[J]. 天然气工业,2022,42(2):110–122. doi: 10.3787/j.issn.1000-0976.2022.02.012
DU Anqi, MAO Jincheng, WANG Dingli, et al. Research progress in chemical viscosity reduction technologies used for medium and deep heavy oil[J]. Natural Gas Industry, 2022, 42(2): 110–122. doi: 10.3787/j.issn.1000-0976.2022.02.012
|
[13] |
魏超平,束青林,吴光焕,等. 敏感性普通稠油水驱油藏化学降黏实践[J]. 特种油气藏,2023,30(2):109–115. doi: 10.3969/j.issn.1006-6535.2023.02.015
Wei Chaoping, Shu Qinglin, Wu Guanghuan, et al. Practice of chemical viscosity reduction in water flooding for sensitive conventional heavy oil reservoirs[J]. Special Oil & Gas Reservoirs, 2023, 30(2): 109–115. doi: 10.3969/j.issn.1006-6535.2023.02.015
|
[14] |
刘硕,柯文奇,杨猛,等. 稠油开采中新型井下混配器降黏携带特性研究[J]. 石油机械,2022,50(6):91–97.
LIU Shuo, KE Wenqi, YANG Meng, et al. Viscosity reduction and carrying characteristics of a new downhole mixer in heavy oil recovery[J]. China Petroleum Machinery, 2022, 50(6): 91–97.
|
[15] |
周娜,姜东,杜玮暄,等. 稠油井过泵旋流混合降黏举升技术[J]. 石油钻探技术,2016,44(6):84–87.
ZHOU Na, JIANG Dong, DU Weixuan, et al. Lifting technology by swirl pumping vortex-reducing viscosity for heavy oil production well[J]. Petroleum Drilling Techniques, 2016, 44(6): 84–87.
|
[16] |
赵帅,蒲万芬,MIKHAIL A V,等. 催化剂和环境温度对稠油燃烧的影响[J]. 西南石油大学学报(自然科学版),2023,45(4):164–173.
ZHAO Shuai, PU Wanfen, MIKHAIL A V, et al. Effects of catalyst and environment temperature on heavy oil combustion[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2023, 45(4): 164–173.
|
[17] |
王春升,杨天宇,杨泽军,等. 海上稠油油田热采开发工程技术研究与应用[J]. 中国海上油气,2023,35(5):193–200.
WANG Chunsheng, YANG Tianyu, YANG Zejun, et al. Engineering technologies study and application of offshore heavey oil thermal recovery[J]. China Offshore Oil and Gas, 2023, 35(5): 193–200.
|
[18] |
杨勇. 胜利油田稠油开发技术新进展及发展方向[J]. 油气地质与采收率,2021,28(6):1–11.
YANG Yong. New progress and next development directions of heavy oil development technologies in Shengli Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(6): 1–11.
|
[19] |
王俊奇,张祖峰,李建馨,等. 稠油开采电加热设备节能技术[J]. 石油机械,2010,38(9):45–48.
WANG Junqi, ZHANG Zufeng, LI Jianxin, et al. The energy-saving technology of the electric heater for heavy oil recovery[J]. China Petroleum Machinery, 2010, 38(9): 45–48.
|
[20] |
郝林,孙楠,王东,等. 泵上掺水工艺在孤东油田稠油油藏的应用[J]. 油气地质与采收率,2004,11(3):71–73. doi: 10.3969/j.issn.1009-9603.2004.03.026
HAO Lin, SUN Nan, WANG Dong, et al. Application of water blending technology above pump in the heavy oil reservoir of Gudong Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2004, 11(3): 71–73. doi: 10.3969/j.issn.1009-9603.2004.03.026
|
[21] |
徐立民,范玉斌,王建恩. 深层稠油开采配套技术在胜利油田的应用研究[J]. 石油天然气学报,2011,33(4):138–141. doi: 10.3969/j.issn.1000-9752.2011.04.033
XU Limin, FAN Yubin, WANG Jian’en. Matching technique for deep heavy-oil production and its application[J]. Journal of Oil and Gas Technology, 2011, 33(4): 138–141. doi: 10.3969/j.issn.1000-9752.2011.04.033
|
[22] |
辛迎春. 纳米SiO2改性稠油高效破乳剂的研制及应用[J]. 石油钻探技术,2008,36(5):75–77. doi: 10.3969/j.issn.1001-0890.2008.05.020
XIN Yingchun. Research and application of modofied Nano-sized silca demulsifier for heavy oil[J]. Petroleum Drilling Techniques, 2008, 36(5): 75–77. doi: 10.3969/j.issn.1001-0890.2008.05.020
|
[23] |
唐清. ZDT乳化降粘剂在超深井稠油开发中的应用[J]. 石油钻探技术,2008,36(2):74–76. doi: 10.3969/j.issn.1001-0890.2008.02.022
Tang Qing. Application of ZDT in heavy oil recovery in ultra-deep well[J]. Petroleum Drilling Techniques, 2008, 36(2): 74–76. doi: 10.3969/j.issn.1001-0890.2008.02.022
|
[24] |
刘书杰,安志杰,于继飞,等. 海上稠油乳化降黏剂的研究及评价[J]. 断块油气田,2015,22(6):829–832.
LIU Shujie, AN Zhijie,YU Jifei, et al. Research and performance evaluation of heavy oil viscosity reducer for offshore oilfield[J]. Fault-Block Oil & Gas Field, 2015, 22(6): 829–832.
|
[25] |
张阳,安高峰,蒋琪,等. 稠油化学降黏剂研究进展与发展趋势[J]. 特种油气藏,2024,31(1):9−19.
ZHANG Yang, AN Gaofeng, JIANG Qi, et al. Research progress and development trend of heavy oil chemical viscosity reducing agent[J]. Special Oil & Gas Reservoirs, 2024, 31(1): 9−19.
|
[26] |
葛际江,李德胜,张贵才. 新型耐温稠油降黏剂的制备与评价[J]. 西南石油大学学报(自然科学版),2007,29(5):112−–115.
GE Jijiang, LI Desheng, ZHANG Guicai. Preparation and evaluation of temperature resistance viscosity reducer for heavy oil[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2007, 29(5): 112−–115.
|
[27] |
李成见. 海上欠饱和稠油油田原油降黏方式探讨[J]. 中国海上油气,2004,16(6):408−411.
LI Chengjian. The discussion of reducing crude oil viscosity methods for offshore undersaturated viscous oil field[J]. China Offshore Oil and Gas, 2004, 16(6): 408−411.
|
1. |
朱连望,殷志明,田得强,刘俊博,杜威,苗典远,张帅. 极地冷海井控应急救援关键技术和装备探讨. 石化技术. 2025(02): 88-90 .
![]() | |
2. |
马金龙,李继丰,刘惠惠. 俄罗斯北极陆上钻井技术挑战与关键技术. 采油工程. 2023(01): 54-59+85-86 .
![]() | |
3. |
范西哲,李晓,吴永川,张居贵,楼一珊,刘善勇,朱亮. 北极永冻区钻井地层压力预测方法. 天然气工业. 2022(03): 99-105 .
![]() | |
4. |
王磊,胡志强,柯珂,张辉,李莅临,闫莉. 极地冷海浅层天然气水合物地层声学特性模拟实验研究. 中国海上油气. 2022(04): 218-224 .
![]() | |
5. |
刘浩亚,鲍洪志,刘亚青,何青水,胡志强,金鑫. 改性高铝水泥浆的负温硬化性能及其增强机制. 石油钻探技术. 2021(02): 54-60 .
![]() | |
6. |
周晓晖,苏义脑,牛成成,程远方,魏佳. 保护冻土层的真空隔热套管性能试验与数值模拟研究. 石油钻探技术. 2021(03): 21-26 .
![]() | |
7. |
鲍洪志,孙元伟,邹德一,牛成成. 含寄生管和中心管的套管隔热效果影响因素研究. 石油钻探技术. 2021(03): 42-47 .
![]() | |
8. |
路保平,侯绪田,柯珂. 中国石化极地冷海钻井技术研究进展与发展建议. 石油钻探技术. 2021(03): 1-10 .
![]() | |
9. |
陈远鹏,王志远,孙宝江,陈野,郑凯波. 极地钻井关键设备橡胶密封材料的优选. 石油钻探技术. 2020(01): 54-60 .
![]() | |
10. |
王建伟,袁继胜,李晓维,孟普伟,蒋毅. 北极地区低温防气窜固井技术研究与应用. 中外能源. 2020(09): 56-59 .
![]() | |
11. |
曾祥禹. 国内外钻井液技术进展及对钻井液的有关认识. 西部探矿工程. 2020(10): 75-76 .
![]() | |
12. |
朱亮,范西哲,李军伟,邹和均,楼一珊,李忠慧. 寒带海域永冻层的力学特性对油气钻井的挑战. 天然气工业. 2020(11): 110-119 .
![]() | |
13. |
刘浩亚,赵卫,李燕,豆宁辉,周朝. 负温早强水泥浆体系的室内实验. 石油钻采工艺. 2019(03): 294-300 .
![]() |