LIU Xing, QIU Jian, CHEN Zuo, et al. Calculation method for complex fracture network area of shale fracturing based on octree grid [J]. Petroleum Drilling Techniques, 2024, 52(6):117−125. DOI: 10.11911/syztjs.2024101
Citation: LIU Xing, QIU Jian, CHEN Zuo, et al. Calculation method for complex fracture network area of shale fracturing based on octree grid [J]. Petroleum Drilling Techniques, 2024, 52(6):117−125. DOI: 10.11911/syztjs.2024101

Calculation Method for Complex Fracture Network Area of Shale Fracturing Based on Octree Grid

More Information
  • Received Date: November 29, 2023
  • Revised Date: September 12, 2024
  • Available Online: December 09, 2024
  • Deep shale gas is mainly developed by cutting fracturing technology. However, the fracturing effect evaluation method based on microseismic event monitoring for calculating stimulated reservoir volume (SRV) is only suitable for volume fracturing of shale gas wells in medium and deep formations, and it is not applicable for evaluating the tight cutting fracturing effectiveness of deep shale gas wells. Therefore, a model for estimating the area of complex fracture network based on the octree grid was established to evaluate the effectiveness of tight cutting fracturing in deep shale gas wells by estimating the complex fracture network area. This model decomposes microseismic events into octree grids and a three-dimensional complex fracture network area equivalent model based on the grid equivalent area method was constructed, by which the area of fracture network can be efficiently estimated without reconstructing the fracture network. In order to quantitatively evaluate the calculation error of this model, a set of synthetic microseismic event point generation methods based on the Gaussian mixture model was established. The simulation results show that this method has high calculation efficiency and estimation accuracy. Field application examples show that compared with the traditional SRV evaluation method, the method can more accurately evaluate the effectiveness of tight cutting fracturing in deep shale gas wells.

  • [1]
    陈作,李双明,陈赞,等. 深层页岩气水力裂缝起裂与扩展试验及压裂优化设计[J]. 石油钻探技术,2020,48(3):70–76. doi: 10.11911/syztjs.2020060

    CHEN Zuo, LI Shuangming, CHEN Zan, et al. Hydraulic fracture initiation and extending tests in deep shale gas formations and fracturing design optimization[J]. Petroleum Drilling Techniques, 2020, 48(3): 70–76. doi: 10.11911/syztjs.2020060
    [2]
    冯发勇,梁志彬,姚昌宇. 东胜气田锦 30 井区变黏压裂液体积压裂技术[J]. 石油钻采工艺,2022,44(6):740–745.

    FENG Fayong, LIANG Zhibin, YAO Changyu. SRV-oriented fracturing with viscosity-variable fracturing fluids in the Jin-30 well district, Dongsheng gas field[J]. Oil Drilling & Production Technology, 2022, 44(6): 740–745.
    [3]
    张矿生,薛小佳,陶亮,等. 页岩油水平井体积压裂缝网波及体积评价新方法及应用[J]. 特种油气藏,2023,30(5):127–134.

    ZHANG Kuangsheng, XUE Xiaojia, TAO Liang, et al. New method for evaluating the volume fracturing fracture network sweep volume in shale oil horizontal wells and its application[J]. Special Oil & Gas Reservoirs, 2023, 30(5): 127–134.
    [4]
    慕立俊,拜杰,齐银,等. 庆城夹层型页岩油地质工程一体化压裂技术[J]. 石油钻探技术,2023,51(5):33–41.

    MU Lijun, BAI Jie, QI Yin, et al. Geological engineering inte-grated fracturing technology for Qingcheng interlayer shale oil [J]. Petroleum Drilling Techniques, 2023, 51(5): 33–41.
    [5]
    胡东风,任岚,李真祥,等. 深层超深层页岩气水平井缝口暂堵压裂的裂缝调控模拟[J]. 天然气工业,2022,42(2):50–58. doi: 10.3787/j.issn.1000-0976.2022.02.006

    HU Dongfeng, REN Lan, LI Zhenxiang, et al. Simulation of fracture control during fracture-opening temporary plugging fracturing of deep/ultra deep shale-gas horizontal wells[J]. Natural Gas Industry, 2022, 42(2): 50–58. doi: 10.3787/j.issn.1000-0976.2022.02.006
    [6]
    GAO Qian, GHASSEMI A. Finite element simulations of 3D planar hydraulic fracture propagation using a coupled hydro-mechanical interface element[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(15): 1999–2024. doi: 10.1002/nag.3116
    [7]
    DAHI-TALEGHANI A, OLSON J E. Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures[J]. SPE Journal, 2011, 16(3): 575–581. doi: 10.2118/124884-PA
    [8]
    OLSON J E. Multi-fracture propagation modeling: applications to hydraulic fracturing in shales and tight gas sands[R]. ARMA 08-327, 2008.
    [9]
    ZHANG Fengshou, DAMJANAC B, MAXWELL S. Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling[J]. Rock Mechanics and Rock Engineering, 2019, 52(12): 5137–5160. doi: 10.1007/s00603-019-01851-3
    [10]
    ZHUANG Xiaoying, ZHOU Shuwei, SHENG Mao, et al. On the hydraulic fracturing in naturally-layered porous media using the phase field method[J]. Engineering Geology, 2020, 266: 105306. doi: 10.1016/j.enggeo.2019.105306
    [11]
    FISHER M K, HEINZE J R, HARRIS C D, et al. Optimizing horizontal completion techniques in the Barnett Shale using microseismic fracture mapping[R]. SPE 90051, 2004.
    [12]
    HUGOT A, DULAC J C, GRINGARTEN E, et al. Connecting the dots: microseismic-derived connectivity for estimating volumes in low-permeability reservoirs[R]. URTEC 2153402, 2015.
    [13]
    WU Yonghui, CHENG Linsong, KILLOUGH J, et al. Integrated characterization of the fracture network in fractured shale gas reservoir: stochastic fracture modeling, simulation and assisted history matching[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108886. doi: 10.1016/j.petrol.2021.108886
    [14]
    ZHOU Zhiwei, SU Yuliang, WANG Wendong, et al. Integration of microseismic and well production data for fracture network calibration with an L-system and rate transient analysis[J]. Journal of Unconventional Oil and Gas Resources, 2016, 15: 113–121. doi: 10.1016/j.juogr.2016.07.001
    [15]
    YU Xin, RUTLEDGE J, LEANEY S, et al. Integration of microseismic data and an unconventional fracture modeling tool to generate the hydraulically induced fracture network: a case study from the Cardium Formation, West Central Alberta, Canada[R]. URTEC 2154594, 2015.
    [16]
    MCCLURE M W, BABAZADEH M, SHIOZAWA S, et al. Fully coupled hydromechanical simulation of hydraulic fracturing in 3D discrete-fracture networks[J]. SPE Journal, 2016, 21(4): 1302–1320. doi: 10.2118/173354-PA
    [17]
    WENG X, KRESSE O, COHEN C, et al. Modeling of hydraulic-fracture-network propagation in a naturally fractured formation[J]. SPE Production & Operations, 2011, 26(4): 368–380.
    [18]
    MEAGHER D. Geometric modeling using octree encoding[J]. Computer Graphics and Image Processing, 1982, 19(2): 129–147. doi: 10.1016/0146-664X(82)90104-6
    [19]
    SAMET H. Foundations of multidimensional and metric data structures[M]. San Francisco: Morgan Kaufmann Publishers Inc. , 2006.
    [20]
    PULLI K, DUCHAMP T, HOPPE H, et al. Robust meshes from multiple range maps[C]//Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No. 97TB100134). Piscataway, NJ: IEEE Press, 1997: 205-211.
    [21]
    AYALA D, BRUNET P, JUAN R, et al. Object representation by means of nonminimal division quadtrees and octrees[J]. ACM Transactions on Graphics (TOG), 1985, 4(1): 41–59. doi: 10.1145/3973.3975
    [22]
    FADAKAR ALGHALANDIS Y. ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications[J]. Computers & Geosciences, 2017, 102: 1–11.
    [23]
    LIU Xing, JIN Yan, LIN Botao, et al. An integrated 3D fracture network reconstruction method based on microseismic events[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104182. doi: 10.1016/j.jngse.2021.104182
  • Related Articles

    [1]LI Yang, LIU Dejun, DING Hao, CHEN Yun, ZHANG Chenghuang. Analysis of simulation characteristics of fracturing fracture potential diagnosis method based on OC-RPIM[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025046
    [2]WANG Xu, LIU Dejun, WU Shiwei, LI Yang, ZHAI Ying. Simulation of Hydraulic Fracture Responses Based on a Magnetotelluric Monitoring Method[J]. Petroleum Drilling Techniques, 2023, 51(6): 115-119. DOI: 10.11911/syztjs.2023018
    [3]SHU Honglin, LIU Chen, LI Zhiqiang, DUAN Guifu, LAI Jianlin, JIANG Ming. Numerical Simulation of Complex Fracture Propagation in Shallow Shale Gas Fracturing in Zhaotong[J]. Petroleum Drilling Techniques, 2023, 51(6): 77-84. DOI: 10.11911/syztjs.2023095
    [4]CHEN Zuo, ZHANG Baoping, ZHOU Jian, LIU Honglei, ZHOU Linbo, WU Chunfang. Research and Test on the Stimulated Reservoir Volume Technology of Hot Dry Rock[J]. Petroleum Drilling Techniques, 2020, 48(6): 82-87. DOI: 10.11911/syztjs.2020098
    [5]LI Yumei, LYU Wei, SONG Jie, LI Jun, YANG Hongwei, YU Liwei. Numerical Simulation Study on the Complex Network Fractures of Stratified Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(4): 108-113. DOI: 10.11911/syztjs.201604019
    [6]Zhou Jian, Zhang Baoping, Li Kezhi, Zhang Xudong, Xu Shengqiang. Fracture Monitoring Technology Based on Surface Tiltmeter in "Well Factory" Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(3): 71-75. DOI: 10.11911/syztjs.201503014
    [7]Liu Yu, Ai Chi. Opening of Natural Fractures under Induced Stress in Multi-Stage Fracturing[J]. Petroleum Drilling Techniques, 2015, 43(1): 20-26. DOI: 10.11911/syztjs.201501004
    [8]Shao Shangqi, Tian Shouceng, Li Gensheng, Sheng Mao. Propagating Orientation of Hydraulic Fractures in Muddy Shale Formation[J]. Petroleum Drilling Techniques, 2014, 42(3): 27-31. DOI: 10.3969/j.issn.1001-0890.2014.03.006
    [9]Jiang Tingxue. The Fracture Complexity Index of Horizontal Wells in Shale Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(2): 7-12. DOI: 10.3969/j.issn.1001-0890.2013.02.002
    [10]Liu Yinshan, Li Zhiping, Lai Fengpeng, Ma Hongze, Ren Guanglei. Productivity Prediction Model of Horizontal Gas Wells with Noncoplanar Fractures[J]. Petroleum Drilling Techniques, 2012, 40(4): 96-101. DOI: 10.3969/j.issn.1001-0890.2012.04.019
  • Cited by

    Periodical cited type(7)

    1. 考佳玮,杨康,谭鹏,陈作. 干热岩储层裂缝扩展及采热一体化数值模型. 吉林大学学报(地球科学版). 2025(02): 575-586 .
    2. 邹剑,兰夕堂,高尚,符杨洋,张丽平,代磊阳. 示踪剂裂缝监测技术在气藏水平井压裂中的应用. 精细与专用化学品. 2024(02): 20-23 .
    3. 刘汉青,胡才博,赵桂萍. 增强地热系统停止运行后温度恢复过程的数值模拟. 中国科学院大学学报. 2024(02): 222-230 .
    4. 陈作,赵乐坤,卫然,刘星. 深层地热热储改造技术进展与发展建议. 石油钻探技术. 2024(06): 10-15 . 本站查看
    5. 刘汉青,胡才博,赵桂萍,石耀霖. 利用热-孔隙流体耦合有限元数值模拟研究干热岩开发温度下降过程——以青海共和盆地恰卜恰地区干热岩开发为例. 地球物理学报. 2023(07): 2887-2902 .
    6. 王旭,刘得军,吴世伟,李洋,翟颖. 基于大地电磁监测方法的水力裂缝响应模拟. 石油钻探技术. 2023(06): 115-119 . 本站查看
    7. 张德龙,郭强,杨鹏,卢彤,吴烁,翁炜,刘宝林. 地热井花岗岩地层钻进提速技术研究与应用进展. 地质与勘探. 2022(05): 1082-1090 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (77) PDF downloads (38) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return