Citation: | FENG Ding, WANG Jiangang, ZHANG Hong, et al. Application and prospect of digital twin in oil and gas drilling & completion engineering [J]. Petroleum Drilling Techniques, 2024, 52(5):26−34. DOI: 10.11911/syztjs.2024095 |
Digital twin has shown great potential in real-time data analysis, engineering design optimization, and equipment health diagnosis and has become a key technology for achieving the digital transformation development of the oil and gas industry and accelerating the next generation of technological innovation in the oil and gas industry. However, due to the imperfect software and hardware in drilling & completion engineering and the unclear research methods, the technology is still in the initial stage. On the basis of discussing the concept and technical characteristics of digital twin in the drilling & completion engineering of oil and gas fields, the latest application progress of digital twin in pre-drilling design, monitoring during drilling, and completion, and operation training of the drilling & completion engineering was introduced, and the application scheme of digital twin in drilling & completion engineering was proposed. The key technologies and methods of digital twin were discussed, and the problems existing in the application of digital twin in drilling & completion engineering and related industries were analyzed. In addition, some suggestions for the development of digital twin in the oil and gas industry were put forward. The results can provide a theoretical basis and method guidance for the application of digital twin in the oil and gas industry, so as to accelerate the digitization process of the oil and gas industry, improve the development efficiency of oil and gas fields, and promote the comprehensive construction of smart oil fields.
[1] |
FEDER J. Will this be the decade of full digital twins for well construction?[J]. Journal of Petroleum Technology, 2021, 73(3): 34–37. doi: 10.2118/0321-0034-JPT
|
[2] |
SAID M M, PILGRIM R, RIDEOUT G, et al. Theoretical development of a digital-twin based automation system for oil well drilling rigs[R]. SPE 208902, 2022.
|
[3] |
贾承造. 中国石油工业上游发展面临的挑战与未来科技攻关方向[J]. 石油学报,2020,41(12):1445–1464. doi: 10.7623/syxb202012001
JIA Chengzao. Development challenges and future scientific and technological researches in China's petroleum industry upstream[J]. Acta Petrolei Sinica, 2020, 41(12): 1445–1464. doi: 10.7623/syxb202012001
|
[4] |
GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U. S. air force vehicles[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2012: AIAA 2012–2018.
|
[5] |
ZBOROWSKI M. Finding meaning, application for the much-discussed “digital twin”[J]. Journal of Petroleum Technology, 2018, 70(6): 26–32. doi: 10.2118/0618-0026-JPT
|
[6] |
陶飞,张贺,戚庆林,等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统,2021,27(1):1–15.
TAO Fei, ZHANG He, QI Qinglin, et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 1–15.
|
[7] |
QI Qinglin, TAO Fei, HU Tianliang, et al. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems, 2021, 58(Part B): 3–21.
|
[8] |
WANG Mengmeng, WANG Chengye, HNYDIUK-STEFAN A, et al. Recent progress on reliability analysis of offshore wind turbine support structures considering digital twin solutions[J]. Ocean Engineering, 2021, 232: 109168. doi: 10.1016/j.oceaneng.2021.109168
|
[9] |
李德仁. 基于数字孪生的智慧城市[J]. 互联网天地,2021(7):12.
LI Deren. Smart city based on digital twins[J]. China Internet, 2021(7): 12.
|
[10] |
胡春宏,郭庆超,张磊,等. 数字孪生流域模型研发若干问题思考[J]. 中国水利,2022(20):7–10. doi: 10.3969/j.issn.1000-1123.2022.20.012
HU Chunhong, GUO Qingchao, ZHANG Lei, et al. Thinking on some problems in the development of professional models for digital twin basins[J]. China Water Resources, 2022(20): 7–10. doi: 10.3969/j.issn.1000-1123.2022.20.012
|
[11] |
杨传书. 数字孪生技术在钻井领域的应用探索[J]. 石油钻探技术,2022,50(3):10–16. doi: 10.11911/syztjs.2022068
YANG Chuanshu. Exploration for the application of digital twin technology in drilling engineering[J]. Petroleum Drilling Techniques, 2022, 50(3): 10–16. doi: 10.11911/syztjs.2022068
|
[12] |
张好林,杨传书,李昌盛,等. 钻井数字孪生系统设计与研发实践[J]. 石油钻探技术,2023,51(3):58–65. doi: 10.11911/syztjs.2023011
ZHANG Haolin, YANG Chuanshu, LI Changsheng, et al. Design and research practice of a drilling digital twin system[J]. Petroleum Drilling Techniques, 2023, 51(3): 58–65. doi: 10.11911/syztjs.2023011
|
[13] |
WEYER S, MEYER T, OHMER M, et al. Future modeling and simulation of CPS-based factories: an example from the automotive industry[J]. IFAC-PapersOnLine, 2016, 49(31): 97–102. doi: 10.1016/j.ifacol.2016.12.168
|
[14] |
TAO Fei, ZHANG He, LIU Ang, et al. Digital twin in industry: state-of-the-art[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2405–2415. doi: 10.1109/TII.2018.2873186
|
[15] |
MACPHERSON J. Technology focus: drilling systems automation and management[J]. Journal of Petroleum Technology, 2020, 72(2): 60. doi: 10.2118/0220-0060-JPT
|
[16] |
FEDER J. Upstream digitalization is proving itself in the real world[J]. Journal of Petroleum Technology, 2020, 72(4): 26–28. doi: 10.2118/0420-0026-JPT
|
[17] |
FEDER J. BHA-design approach improves drilling performance and wellbore quality[J]. Journal of Petroleum Technology, 2020, 72(12): 57–58. doi: 10.2118/1220-0057-JPT
|
[18] |
IMOMOH V B, TOYOBO O, OKAFOR R. Creating a digital twin of part of the earth subsurface through reservoir navigation service[R]. SPE 203621, 2020.
|
[19] |
WEI Li, PU Ding, HUANG Min, et al. Applications of digital twins to offshore oil/gas exploitation: from visualization to evaluation[J]. IFAC-PapersOnLine, 2020, 53(5): 738–743. doi: 10.1016/j.ifacol.2021.04.166
|
[20] |
BHOWMIK S, NAIK H. Subsea structure and pipeline design automation using digital field twin[R]. OTC 30909, 2020.
|
[21] |
ISBELL M R, MANOCHA M R, MANGOLD B R, et al. A novel use of digital technologies for more effective multi-party well planning and execution[R]. SPE 204050, 2021.
|
[22] |
NADHAN D, MAYANI M G, ROMMETVEIT R. Drilling with digital twins[R]. SPE 191388, 2018.
|
[23] |
郭永峰. 国际巨头应用“数字孪生体”技术降低油气开采成本[J]. 中国石油企业,2021(7):68–69.
GUO Yongfeng. International giants apply “digital twin” technology to reduce oil and gas extraction costs[J]. China Petroleum Enterprise, 2021(7): 68–69.
|
[24] |
FERRARA P, MACCARINI G R, POLONI R, et al. Virtual reality: new concepts for virtual drilling environment and well digital twin[R]. IPTC 20267, 2020.
|
[25] |
DOUGLAS A, RIOS V. How to achieve project and operational certainty using a digital twin[R]. SPE 195766, 2019.
|
[26] |
BURRAFATO S, MALIARDI A, FERRARA P, et al. Virtual reality in D & C: new approaches towards well digital twins[R]. OMC 2019-1240, 2019.
|
[27] |
孙巧雷,冯定,刘旭辉,等. 油气装备新进展课程案例教学设计与实践:以海上“蓝鲸1号”半潜式钻井平台为例[J]. 中国现代教育装备,2023,13:137–139.
SUN Qiaolei, FENG Ding, LIU Xuhui, et al. The case teaching design and practice of advance of oil field equipment: taking the offshore semi-submersible drilling and production platform "Blue Whale-1" as an example[J]. China Modern Educational Equipment, 2023, 13: 137–139.
|
[28] |
FEDER J. Recovering more than 70% from the Johan Sverdrup Field[J]. Journal of Petroleum Technology, 2020, 72(9): 62–63. doi: 10.2118/0920-0062-JPT
|
[29] |
FEDER J. Data exchange and collaboration realize automated drilling control potential[J]. Journal of Petroleum Technology, 2021, 73(2): 47–48. doi: 10.2118/0221-0047-JPT
|
[30] |
KARPOV R B, ZUBKOV D Y, MURLAEV A V, et al. Drilling performance and data quality control with live digital twin[R]. SPE 206527, 2021.
|
[31] |
SHI Jibin, DOURTHE L, LI D, et al. Real-time reamer vibration predicting, monitoring, and decision-making using hybrid modeling and a process digital twin[R]. SPE 208795, 2022.
|
[32] |
SHIRANGI M G, FURLONG E, SIMS K S. Digital twins for well planning and bit dull grade prediction[R]. SPE 200740, 2020.
|
[33] |
ARÉVALO P J, HUMMES O, FORSHAW M. Integrated real-time simulation in an earth model–automating drilling and driving efficiency[R]. SPE 204069, 2021.
|
[34] |
GAO Zhuo, HYDER S Z. Using autonomous control to stabilize well performance without the downhole pressure gauge[R]. SPE 211042, 2022.
|
[35] |
KALININ O, ELFIMOV M, BAYBOLOV T. Exploration drilling management system based on digital twins technology[R]. SPE 205994, 2021.
|
[36] |
JEFFERY C, CREEGAN A. Adaptive drilling application uses AI to enhance on-bottom drilling performance[J]. Journal of Petroleum Technology, 2020, 72(8): 45–47. doi: 10.2118/0820-0045-JPT
|
[37] |
dos SANTOS M V, DUARTE ROSA R M, de OLIVEIRA L A , et al. Development and deployment of digital twin for production and well integrity[R]. SPE 210260, 2022.
|
[38] |
ARÉVALO P J, FORSHAW M, STAROSTIN A, et al. Monitoring hole-cleaning during drilling operations: case studies with a real-time transient model[R]. SPE 210244, 2022.
|
[39] |
REYES R A, MACHADO M, TORRE M, et al. Digital wellhead integrated system for production management[R]. SPE 211158, 2022.
|
[40] |
KUCUKCOBAN S, KLUK D J, PESTANA R G, et al. A digital twin for computing dynamic watch circles on a dynamically positioned MODU[R]. OTC 31709, 2022.
|
[41] |
RODRIGUEZ D, CLARE P, SRIKONDA R, et al. Stampede digital twin: an advanced solution for process equipment condition monitoring[R]. SPE 210106, 2022.
|
[42] |
WU Bo, KOU Yufeng, LIU Jun, et al. Research on the application of digital twin technology in the structural safety assessment of deep-water semi-submersible platforms[R]. ISOPE I-22-296, 2022.
|
[43] |
CARPENTER C. Johan Sverdrup’s digital operations drive efficiency, safety[J]. Journal of Petroleum Technology, 2020, 72(9): 67–68. doi: 10.2118/0920-0067-JPT
|
1. |
袁亮亮,陈亚舟,孙大伟,张红岗,魏波. 超低渗油藏整体宽带压裂技术研究与应用. 石化技术. 2024(01): 41-43 .
![]() | |
2. |
王哲,曹广胜,白玉杰,王培伦,王鑫. 低渗透油藏提高采收率技术现状及展望. 特种油气藏. 2023(01): 1-13 .
![]() | |
3. |
慕立俊,李向平,喻文锋,卜军,李蕾,刘铁楼. 超低渗透油藏水平井重复压裂新老缝合理配比研究. 石油钻探技术. 2023(03): 97-104 .
![]() | |
4. |
雷群,翁定为,管保山,师俊峰,才博,何春明,孙强,黄瑞. 中美页岩油气开采工程技术对比及发展建议. 石油勘探与开发. 2023(04): 824-831 .
![]() | |
5. |
LEI Qun,WENG Dingwei,GUAN Baoshan,SHI Junfeng,CAI Bo,HE Chunming,SUN Qiang,HUANG Rui. Shale oil and gas exploitation in China: Technical comparison with US and development suggestions. Petroleum Exploration and Development. 2023(04): 944-954 .
![]() |
|
6. |
周怡,于世虎,郭德斌. 暂堵技术在致密气储层应用探析. 能源与节能. 2023(11): 14-18+23 .
![]() | |
7. |
尹虎,董满仓,卢伟峰,褚晓红. 非交联黄原胶清洁压裂技术研究及应用——以延长油田FJ29-5井为例. 中国石油和化工标准与质量. 2021(11): 143-144+149 .
![]() | |
8. |
李熠,张宁利,刘建升,周长顺,于波,马腾. 中高含水油井宽带压裂技术试验及应用. 石油化工应用. 2021(08): 58-61 .
![]() | |
9. |
陈清,曹伟佳,田中原,卢祥国,闫冬. 自悬浮支撑剂覆膜材料对储层渗透率影响研究. 石油化工高等学校学报. 2020(01): 42-47 .
![]() | |
10. |
杨金峰,张进科,张倩,苟利鹏,张满. 暂堵压裂造多缝工艺技术在姬塬油田的研究与应用. 石油化工应用. 2020(07): 46-51 .
![]() | |
11. |
王红娟,洪千里,李伟峰,杨全枝,高明星. 低渗透浅层油藏裸眼井复产挖潜技术应用. 非常规油气. 2020(04): 112-118 .
![]() | |
12. |
董小卫,田志华,舒博钊,南荣丽,韩光耀,刘亚明,赵文龙. 水平井不动管柱无限级分段重复压裂技术研究. 石油矿场机械. 2019(01): 60-63 .
![]() | |
13. |
徐昆,李达,郭玉杰,范希良,赵立强. DMF新型超分子暂堵剂研发及性能评价. 油气藏评价与开发. 2019(01): 51-55 .
![]() | |
14. |
李国雄,史飞,刘鼎,陈向东,程某存,徐少华,赵艳林. 子长油田肖家河区长4+5、长6储层压裂特征研究. 山东化工. 2019(03): 80-82 .
![]() | |
15. |
齐月魁,李东平,张宏峰,黄满良,赵涛,齐振. 基于膨胀管封堵的老井页岩油体积压裂技术研究. 天津科技. 2019(11): 49-55 .
![]() | |
16. |
隋阳,刘德基,刘建伟,蒋明,刘建辉,张宁县. 低成本致密油层水平井重复压裂新方法——以吐哈油田马56区块为例. 石油钻采工艺. 2018(03): 369-374 .
![]() | |
17. |
王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术. 石油钻探技术. 2018(02): 81-86 .
![]() | |
18. |
秦金立. 选择性重复压裂工具关键技术. 石油钻探技术. 2018(04): 71-77 .
![]() | |
19. |
陶亮,郭建春,李凌铎,李慧,贺娜. 致密油藏水平井重复压裂多级选井方法研究. 特种油气藏. 2018(04): 67-71 .
![]() | |
20. |
李达,王乐,衣德强,朱李安,胡晓宇,崔云群,党小理,崔露. 苏里格致密砂岩压裂中转向剂用量与转向角的关系. 钻井液与完井液. 2018(04): 108-113 .
![]() | |
21. |
段景杰,姚振杰,黄春霞,赵永攀. 特低渗透油藏CO_2驱流度控制技术. 断块油气田. 2017(02): 190-193 .
![]() | |
22. |
朱金智,雷明,任玲玲,王晓强,徐国何,黄维安. 致密砂岩气藏高温高压敏感性评价及机理探讨——以塔里木盆地B区块致密气藏为例. 断块油气田. 2017(02): 222-225 .
![]() | |
23. |
温永利,陈丕国,唐颖超. 低渗透油田压裂技术及发展趋势探讨. 中国石油石化. 2017(04): 85-86 .
![]() | |
24. |
刘佳. 采油井重复压裂裂缝失效原因研究. 化工管理. 2016(19): 171 .
![]() | |
25. |
王疆宁. 压裂技术在油田低渗透储层改造中的应用. 石化技术. 2016(11): 95 .
![]() | |
26. |
王国壮,梁承春,孙招锋,徐超. 红河油田长6特低渗油藏多元复合酸降压增注技术. 石油钻探技术. 2016(04): 96-101 .
![]() | |
27. |
马金良,潘娟芳,王林,张武,李楠,祝道平. 自封压缩式封隔器的研制与应用. 石油钻探技术. 2015(06): 120-124 .
![]() |