Citation: | JI Wendong, WAN Jifang, HE Yuxian, et al. Key technologies and prospect of salt cavern hydrogen storage in China [J]. Petroleum Drilling Techniques, 2024, 52(4):158-166. DOI: 10.11911/syztjs.2024055 |
With the advancement of China’s carbon peaking and carbon neutrality (“dual carbon”) goals, traditional fossil energy is being transformed into renewable and clean energy. Hydrogen energy, characterized by wide sources, high energy density, and high efficiency and cleanliness, has become an important energy component in the future. Salt caverns have especially obvious advantages in terms of gas tightness, and salt does not react with hydrogen, making them the first choice for large-scale underground hydrogen storage. In order to focus on the research and future development of salt cavern hydrogen storage technologies in China, the geological types and characteristics of hydrogen storage were analyzed and the research progress of salt cavern hydrogen storage and its current situation in foreign operations were discussed. In view of the salt cavern hydrogen storage technologies, the key technologies such as large-size drilling and completion, salt cavern cavity creation and morphology control, cavity sealing evaluation, wellbore integrity testing and evaluation, and control of tubing corrosion and hydrogen embrittlement were analyzed. The relevant hydrogen energy policies and strategic goals formulated by various countries in recent years were summarized. Combining the opportunities and challenges for the future development of salt cavern hydrogen storage in China, the prospects were provided for the geological selection and evaluation of salt cavern hydrogen storage, integrity of large-size wellbore, morphology control of salt cavern cavity creation and sealing detection, and organic synergistic development of hydrogen energy and salt, with a view to advancing the large-scale application of hydrogen energy and the development of industrial chain. The results of the study can provide a reference for the development and planning of salt cavern hydrogen storage in China.
[1] |
韩利,李琦,冷国云,等. 氢能储存技术最新进展[J]. 化工进展,2022,41(增刊1):108-117.
HAN Li, LI Qi, LENG Guoyun, et al. Latest research progress of hydrogen energy storage technology[J]. Chemical Industry and Engineering Progress, 2022, 41(supplement 1): 108-117.
|
[2] |
孙德强,张俊武,吴小梅,等. 我国氢能产业发展现状、挑战及对策[J]. 中国能源,2022,44(9):27–35.
SUN Deqiang, ZHANG Junwu, WU Xiaomei, et al. Development status, challenges and countermeasures of hydrogen energy industry in China[J]. Energy of China, 2022, 44(9): 27–35.
|
[3] |
张智,赵苑瑾,蔡楠. 中国氢能产业技术发展现状及未来展望[J]. 天然气工业,2022,42(5):156–165.
ZHANG Zhi, ZHAO Yuanjin, CAI Nan. Technological development status and prospect of hydrogen energy industry in China[J]. Natural Gas Industry, 2022, 42(5): 156–165.
|
[4] |
TARKOWSKI R. Underground hydrogen storage: characteristics and prospects[J]. Renewable and Sustainable Energy Reviews, 2019, 105: 86–94. doi: 10.1016/j.rser.2019.01.051
|
[5] |
刘玮,万燕鸣,熊亚林,等. “双碳” 目标下我国低碳清洁氢能进展与展望[J]. 储能科学与技术,2022,11(2):635–642.
LIU Wei, WAN Yanming, XIONG Yalin, et al. Outlook of low carbon and clean hydrogen in China under the goal of “carbon peak and neutrality”[J]. Energy Storage Science and Technology, 2022, 11(2): 635–642.
|
[6] |
SAMBO C, DUDUN A, SAMUEL S A, et al. A review on worldwide underground hydrogen storage operating and potential fields[J]. International Journal of Hydrogen Energy, 2022, 47(54): 22840–22880. doi: 10.1016/j.ijhydene.2022.05.126
|
[7] |
邹才能,熊波,薛华庆,等. 新能源在碳中和中的地位与作用[J]. 石油勘探与开发,2021,48(2):411–420.
ZOU Caineng, XIONG Bo, XUE Huaqing, et al. The role of new energy in carbon neutral[J]. Petroleum Exploration and Development, 2021, 48(2): 411–420.
|
[8] |
刘翠伟,洪伟民,王多才,等. 地下储氢技术研究进展[J]. 油气储运,2023,42(8):841–855.
LIU Cuiwei, HONG Weimin, WANG Duocai, et al. Research progress of underground hydrogen storage technology[J]. Oil & Gas Storage and Transportation, 2023, 42(8): 841–855.
|
[9] |
闫伟,冷光耀,李中,等. 氢能地下储存技术进展和挑战[J]. 石油学报,2023,44(3):556–568.
YAN Wei, LENG Guangyao, LI Zhong, et al. Progress and challenges of underground hydrogen storage technology[J]. Acta Petrolei Sinica, 2023, 44(3): 556–568.
|
[10] |
KING M, JAIN A, BHAKAR R, et al. Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110705. doi: 10.1016/j.rser.2021.110705
|
[11] |
WAN Mingzhong, JI Wendong, WAN Jifang, et al. Compressed air energy storage in salt caverns in China: development and outlook[J]. Advances in Geo-Energy Research, 2023, 9(1): 54–67. doi: 10.46690/ager.2023.07.06
|
[12] |
潘松圻,邹才能,王杭州,等. 地下储氢库发展现状及气藏型储氢库高效建库十大技术挑战[J]. 天然气工业,2023,43(11):164–180.
PAN Songqi, ZOU Caineng, WANG Hangzhou, et al. Development status of underground hydrogen storages and top ten technical challenges to efficient construction of gas reservoir-type underground hydrogen storages[J]. Natural Gas Industry, 2023, 43(11): 164–180.
|
[13] |
LEMIEUX A, SHKARUPIN A, SHARP K. Geologic feasibility of underground hydrogen storage in Canada[J]. International Journal of Hydrogen Energy, 2020, 45(56): 32243–32259. doi: 10.1016/j.ijhydene.2020.08.244
|
[14] |
PAN Bin, YIN Xia, JU Yang, et al. Underground hydrogen storage: influencing parameters and future outlook[J]. Advances in Colloid and Interface Science, 2021, 294: 102473. doi: 10.1016/j.cis.2021.102473
|
[15] |
WAN Jifang, SUN Yangqing, HE Yuxian, et al. Development and technology status of energy storage in depleted gas reservoirs[J]. International Journal of Coal Science & Technology, 2024, 11(1): 29.
|
[16] |
OLABI A G, WILBERFORCE T, RAMADAN M, et al. Compressed air energy storage systems: components and operating parameters: a review[J]. Journal of Energy Storage, 2021, 34: 102000. doi: 10.1016/j.est.2020.102000
|
[17] |
姜德义,蒋昌奇,陈结,等. 盐岩巴西劈裂损伤愈合特性实验研究[J]. 工程科学学报,2020,42(5):570–577.
JIANG Deyi, JIANG Changqi, CHEN Jie, et al. Experimental study of the self-healing property of damaged salt rock by Brazilian splitting[J]. Chinese Journal of Engineering, 2020, 42(5): 570–577.
|
[18] |
李建君,陈加松,刘继芹,等. 盐穴储气库天然气阻溶回溶造腔工艺[J]. 油气储运,2017,36(7):816–824.
LI Jianjun, CHEN Jiasong, LIU Jiqin, et al. Re-leaching solution mining technology under natural gas for salt-cavern gas storage[J]. Oil & Gas Storage and Transportation, 2017, 36(7): 816–824.
|
[19] |
曹仟妮,贾孟硕,李博达,等. 面向盐穴大规模储氢商业模式的副产氢供应链管理决策[J]. 清华大学学报(自然科学版),2023,63(12):2019–2032.
CAO Qianni, JIA Mengshuo, LI Boda, et al. Decisions of a byproduct hydrogen supply chain for a business model of large-scale hydrogen storage[J]. Journal of Tsinghua University(Science and Technology), 2023, 63(12): 2019–2032.
|
[20] |
RAZA A, ARIF M, GLATZ G, et al. A holistic overview of underground hydrogen storage: influencing factors, current understanding, and outlook[J]. Fuel, 2022, 330: 125636. doi: 10.1016/j.fuel.2022.125636
|
[21] |
骆正山,欧阳长风,王小完,等. 盐穴储气库注采管柱内腐蚀速率预测模型研究[J]. 表面技术,2022,51(6):283–290.
LUO Zhengshan, OUYANG Changfeng, WANG Xiaowan, et al. Research on prediction model of internal corrosion rate in injection and production string of salt cavern gas storage[J]. Surface Technology, 2022, 51(6): 283–290.
|
[22] |
VANDEGINSTE V, JI Yukun, BUYSSCHAERT F, et al. Mineralogy, microstructures and geomechanics of rock salt for underground gas storage[J]. Deep Underground Science and Engineering, 2023, 2(2): 129–147. doi: 10.1002/dug2.12039
|
[23] |
MAHMUD W M. Impact of salinity and temperature variations on relative permeability and residual oil saturation in neutral-wet sandstone[J]. Capillarity, 2022, 5(2): 23–31. doi: 10.46690/capi.2022.02.01
|
[24] |
郑雅丽,完颜祺琪,邱小松,等. 盐穴地下储气库选址与评价新技术[J]. 天然气工业,2019,39(6):123–130.
ZHENG Yali, WANYAN Qiqi, QIU Xiaosong, et al. New technologies for site selection and evaluation of salt-cavern underground gas storages[J]. Natural Gas Industry, 2019, 39(6): 123–130.
|
[25] |
LI Jingcui, WAN Jingcui, LIU Hangming, et al. Stability analysis of a typical salt cavern gas storage in the Jintan Area of China[J]. Energies, 2022, 15(11): 4167. doi: 10.3390/en15114167
|
[26] |
彭芬,张宝,杨鹏程,等. 库车山前超深巨厚致密砂岩纵向细分层改造技术[J]. 石油钻探技术,2024,52(2):187–193.
PENG Fen, ZHANG Bao, YANG Pengcheng, et al. Vertical subdivision layer stimulation technology for ultra-deep and super-thick tight sandstone in Kuqa piedmont[J]. Petroleum Drilling Techniques, 2024, 52(2): 187–193.
|
[27] |
曹烨,邱国玉,邹振东. 中国盐矿资源概况及其产业形势分析[J]. 无机盐工业,2018,50(3):1–5.
CAO Ye, QIU Guoyu, ZOU Zhendong. Analysis on salt mine resources and its industrial situation in China[J]. Inorganic Chemicals Industry, 2018, 50(3): 1–5.
|
[28] |
刘继芹,刘玉刚,陈加松,等. 盐穴储气库天然气阻溶造腔数值模拟[J]. 油气储运,2017,36(7):825–831.
LIU Jiqin, LIU Yugang, CHEN Jiasong, et al. A numerical simulation for the solution mining under natural gas of salt-cavern gas storage[J]. Oil & Gas Storage and Transportation, 2017, 36(7): 825–831.
|
[29] |
李文婧,姜源,单保东,等. 盐穴储气库注采运行时温效应对腔体稳定性的影响[J]. 石油学报,2020,41(6):762–776.
LI Wenjing, JIANG Yuan, SHAN Baodong, et al. Time-temperature effect on cavity stability during gas injection and production in gas storage with salt caves[J]. Acta Petrolei Sinica, 2020, 41(6): 762–776.
|
[30] |
杨春和,梁卫国,魏东吼,等. 中国盐岩能源地下储存可行性研究[J]. 岩石力学与工程学报,2005,24(24):4409–4417.
YANG Chunhe, LIANG Weiguo, WEI Donghou, et al. Investigation on possibility of energy storage in salt rock in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(24): 4409–4417.
|
[31] |
朱华银,王粟,张敏,等. 盐穴储气库全周期注采模拟:以JT储气库X1和X2盐腔为例[J]. 石油学报,2021,42(3):367–377.
ZHU Huayin, WANG Su, ZHANG Min, et al. Cyclic injection-production simulation of salt cavern gas storages: a case study of X1 and X2 salt caverns of JT Gas Storage[J]. Acta Petrolei Sinica, 2021, 42(3): 367–377.
|
[32] |
JIANG Yujing, CHEN Lugen, WANG Dong, et al. Mechanical properties and acoustic emission characteristics of soft rock with different water contents under dynamic disturbance[J]. International Journal of Coal Science & Technology, 2024, 11(1): 36.
|
[33] |
石悦,郭文朋,徐宁,等. 采卤老腔改建盐穴储气库关键技术及应用[J]. 特种油气藏,2021,28(5):134–139.
SHI Yue, GUO Wenpeng, XU Ning, et al. Key technology and application of reconstruction of existing brine extraction caverns into salt cavern gas storage[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 134–139.
|
[34] |
王敏生,姚云飞. 碳中和约束下油气行业发展形势及应对策略[J]. 石油钻探技术,2021,49(5):1–6.
WANG Minsheng, YAO Yunfei. Development situation and countermeasures of the oil and gas industry facing the challenge of carbon neutrality[J]. Petroleum Drilling Techniques, 2021, 49(5): 1–6.
|
[35] |
张荣达,张庆斌,高睿. 氢储能电站运营的模式优选与激励机制[J]. 西南石油大学学报(社会科学版),2024,26(3):9–17.
ZHANG Rongda, ZHANG Qingbin, GAO Rui. Operation mode optimization and incentive mechanism of hydrogen energy storage power station[J]. Journal of Southwest Petroleum University(Social Sciences Edition), 2024, 26(3): 9–17.
|
[36] |
IORDACHE I, SCHITEA D, GHEORGHE A V, et al. Hydrogen underground storage in Romania, potential directions of development, stakeholders and general aspects[J]. International Journal of Hydrogen Energy, 2014, 39(21): 11071–11081. doi: 10.1016/j.ijhydene.2014.05.067
|
[37] |
LE DUIGOU A, BADER A G, LANOIX J C, et al. Relevance and costs of large scale underground hydrogen storage in France[J]. International Journal of Hydrogen Energy, 2017, 42(36): 22987–23003. doi: 10.1016/j.ijhydene.2017.06.239
|
[38] |
LEMIEUX A, SHARP K, SHKARUPIN A. Preliminary assessment of underground hydrogen storage sites in Ontario, Canada[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15193–15204. doi: 10.1016/j.ijhydene.2019.04.113
|
[39] |
CAGLAYAN D G, WEBER N, HEINRICHS H U, et al. Technical potential of salt caverns for hydrogen storage in Europe[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6793–6805. doi: 10.1016/j.ijhydene.2019.12.161
|
[40] |
LIU Wei, ZHANG Zhixin, CHEN Jie, et al. Feasibility evaluation of large-scale underground hydrogen storage in bedded salt rocks of China: a case study in Jiangsu Province[J]. Energy, 2020, 198: 117348. doi: 10.1016/j.energy.2020.117348
|
[41] |
HEMATPUR H, ABDOLLAHI R, ROSTAMI S, et al. Review of underground hydrogen storage: concepts and challenges[J]. Advances in Geo-Energy Research, 2023, 7(2): 111–131. doi: 10.46690/ager.2023.02.05
|
[42] |
纪钦洪,于广欣,黄海龙,等. 海上风电制氢技术现状与发展趋势[J]. 中国海上油气,2023,35(1):179–186.
JI Qinhong, YU Guangxin, HUANG Hailong, et al. Present status and developing trend of offshore wind-to-hydrogen technology[J]. China Offshore Oil and Gas, 2023, 35(1): 179–186.
|
[43] |
袁光杰,张弘,金根泰,等. 我国地下储气库钻井完井技术现状与发展建议[J]. 石油钻探技术,2020,48(3):1–7.
YUAN Guangjie, ZHANG Hong, JIN Gentai, et al. Current status and development suggestions in drilling and completion technology of underground gas storage in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 1–7.
|
[44] |
郑雅丽,邱小松,赖欣,等. 盐穴储气库地质体完整性管理体系[J]. 油气储运,2022,41(9):1021–1028.
ZHENG Yali, QIU Xiaosong, LAI Xin, et al. Integrity management system for geological body of salt-cavern gas storage[J]. Oil & Gas Storage and Transportation, 2022, 41(9): 1021–1028.
|
[45] |
练章华,牟易升,张强,等. 超深气井油管气密封检测应力分析及防控措施[J]. 石油钻采工艺,2018,40(3):324–329.
LIAN Zhanghua, MOU Yisheng, ZHANG Qiang, et al. Analysis and control measures on the air tightness detecting pressure of tubing in ultra-deep gas wells[J]. Oil Drilling & Production Technology, 2018, 40(3): 324–329.
|
[46] |
WAN Jifang, MENG Tao, LI Jinlong, et al. Energy storage salt cavern construction and evaluation technology[J]. Advances in Geo-Energy Research, 2023, 9(3): 141–145. doi: 10.46690/ager.2023.09.01
|
[47] |
MATOS C R, CARNEIRO J F, SILVA P P. Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification[J]. Journal of Energy Storage, 2019, 21: 241–258. doi: 10.1016/j.est.2018.11.023
|
[48] |
卢雪梅. 氢气地储成西方国家储能研究热点[J]. 石油与天然气地质,2021,42(6):1240.
LU Xuemei. Hydrogen storage has become a research hotspot for energy storage in western countries[J]. Oil & Gas Geology, 2021, 42(6): 1240.
|
[49] |
SAINZ-GARCIA A, ABARCA E, RUBI V, et al. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer[J]. International Journal of Hydrogen Energy, 2017, 42(26): 16657–16666. doi: 10.1016/j.ijhydene.2017.05.076
|
[50] |
ZIVAR D, KUMAR S, FOROOZESH J. Underground hydrogen storage: a comprehensive review[J]. International Journal of Hydrogen Energy, 2021, 46(45): 23436–23462. doi: 10.1016/j.ijhydene.2020.08.138
|
[51] |
敖海兵,陈加松,胡志鹏,等. 盐穴储气库运行损伤评价体系[J]. 油气储运,2017,36(8):910–917.
AO Haibing, CHEN Jiasong, HU Zhipeng, et al. Study on the damage assessment system of salt-cavern gas storage[J]. Oil & Gas Storage and Transportation, 2017, 36(8): 910–917.
|
[52] |
REITENBACH V, GANZER L, ALBRECHT D, et al. Influence of added hydrogen on underground gas storage: a review of key issues[J]. Environmental Earth Sciences, 2015, 73(11): 6927–6937. doi: 10.1007/s12665-015-4176-2
|
[53] |
CHEN Dongxu, WANG Laigui, VERSAILLOT P D, et al. Triaxial creep damage characteristics of sandstone under high crustal stress and its constitutive model for engineering application[J]. Deep Underground Science and Engineering, 2023, 2(3): 262–273. doi: 10.1002/dug2.12033
|
[54] |
袁光杰,班凡生,万继方. 盐穴储库造腔工程技术[M]. 北京:石油工业出版社,2020.
YUAN Guangjie, BAN Fansheng, WAN Jifang. Cavity engineering technology of salt cavern reservoir[M]. Beijing: Petroleum Industry Press, 2020.
|
[55] |
袁光杰,申瑞臣,袁进平,等. 盐穴储气库密封测试技术的研究及应用[J]. 石油学报,2007,28(4):119–121.
YUAN Guangjie, SHEN Ruichen, YUAN Jinping, et al. Study and application of tightness testing technology for salt cavern gas storage[J]. Acta Petrolei Sinica, 2007, 28(4): 119–121.
|
[56] |
EBIGBO A, GOLFIER F, QUINTARD M. A coupled, pore-scale model for methanogenic microbial activity in underground hydrogen storage[J]. Advances in Water Resources, 2013, 61: 74–85. doi: 10.1016/j.advwatres.2013.09.004
|
[57] |
吴俊霞,伊伟锴,孙鹏,等. 文23储气库封堵井完整性保障技术[J]. 石油钻探技术,2022,50(5):57–62. doi: 10.11911/syztjs.2022027
WU Junxia, YI Weikai, SUN Peng, et al. Integrity assurance technologies for plugged wells in Wen 23 Gas Storage[J]. Petroleum Drilling Techniques, 2022, 50(5): 57–62. doi: 10.11911/syztjs.2022027
|
[58] |
张波,胥志雄,高文祥,等. 深层气井生产管柱完整性检测技术总结及评价[J]. 天然气与石油,2020,38(5):49–57.
ZHANG Bo, XU Zhixiong, GAO Wenxiang, et al. Summary and evaluation of integrity detection technology for production string in deep gas well[J]. Natural Gas and Oil, 2020, 38(5): 49–57.
|
[59] |
LI Jingcui, WAN Jifang, WANG Tingting, et al. Leakage simulation and acoustic characteristics based on acoustic logging by ultrasonic detection[J]. Advances in Geo-Energy Research, 2022, 6(3): 181–191. doi: 10.46690/ager.2022.03.02
|
[60] |
黄运华,陈恒,赵起越,等. 高强度低合金钢中纳米析出相对腐蚀行为影响的研究进展[J]. 工程科学学报,2021,43(3):321–331.
HUANG Yunhua, CHEN Heng, ZHAO Qiyue, et al. Influence of nanosized precipitate on the corrosion behavior of high-strength low-alloy steels: a review[J]. Chinese Journal of Engineering, 2021, 43(3): 321–331.
|
[61] |
YU Junwei, LIN Tianhao, LI Jialin, et al. Construction of PAN-based activated carbon nanofibers for hydrogen storage under ambient pressure[J]. Capillarity, 2023, 6(3): 49–56. doi: 10.46690/capi.2023.03.02
|
[62] |
高嘉珮,彭冲,牛梦龙,等. 多氢酸酸化反应特征及动力学[J]. 石油学报,2019,40(2):207–214.
GAO Jiapei, PENG Chong, NIU Menglong, et al. Acidification characteristics and kinetics of multi-hydrogen acid[J]. Acta Petrolei Sinica, 2019, 40(2): 207–214.
|
[63] |
CAI Rui, GUI Jie, LI Mingxing, et al. Corrosion reason analysis of 13Cr110 tubing in an injection and production well of the Suqiao Gas Storage Group[J]. International Journal of Photoenergy, 2021, 2021: 6639179.
|
[64] |
UGARTE E R, SALEHI S. A review on well integrity issues for underground hydrogen storage[J]. Journal of Energy Resources Technology, 2022, 144(4): 042001. doi: 10.1115/1.4052626
|
[65] |
徐硕,余碧莹. 中国氢能技术发展现状与未来展望[J]. 北京理工大学学报(社会科学版),2021,23(6):1–12.
XU Shuo, YU Biying. Current development and prospect of hydrogen energy technology in China[J]. Journal of Beijing Institute of Technology(Social Sciences Edition), 2021, 23(6): 1–12.
|
[66] |
陆佳敏,徐俊辉,王卫东,等. 大规模地下储氢技术研究展望[J]. 储能科学与技术,2022,11(11):3699–3707.
LU Jiamin, XU Junhui, WANG Weidong, et al. Development of large-scale underground hydrogen storage technology[J]. Energy Storage Science and Technology, 2022, 11(11): 3699–3707.
|
[67] |
魏凤,任小波,高林,等. 碳中和目标下美国氢能战略转型及特征分析[J]. 中国科学院院刊,2021,36(9):1049–1057.
WEI Feng, REN Xiaobo, GAO Lin, et al. Analysis on transformation and characteristics of American hydrogen energy strategy under carbon neutralization goal[J]. Bulletin of the Chinese Academy of Sciences, 2021, 36(9): 1049–1057.
|
[68] |
刘大正,崔咏梅,赵飞. 新型储能商业化运行模式分析与发展建议[J]. 分布式能源,2022,7(5):46–55.
LIU Dazheng, CUI Yongmei, ZHAO Fei. Operating mode analysis and developmental suggestions of new energy storage in commercial application scenarios[J]. Distributed Energy, 2022, 7(5): 46–55.
|
[69] |
孙旭东,赵玉莹,李诗睿,等. 我国地方性氢能发展政策的文本量化分析 [J]. 化工进展,2023,42(7):3478–3488.
SUN Xudong, ZHAO Yuying, LI Shirui, et al. Textual quantitative analysis on China’s local hydrogen energy development policies[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478–3488.
|
1. |
王江涛,仇德朋,吴桐,杜跃展,曹忠波,葛晓文. 风光氢一体站的绿氢存储与外输技术策略研究. 现代化工. 2025(04): 12-17 .
![]() |