Citation: | XU Fuqiang, XUE Yafei, SONG Xianzhi, et al. Heat extraction evaluation and well pattern comparison of abandoned oil wells converted into geothermal wells [J]. Petroleum Drilling Techniques, 2024, 52(6):156−166. DOI: 10.11911/syztjs.2024021 |
Geothermal energy development has many advantages, but well construction accounts for half of the total costs, which restricts the promotion and utilization of geothermal energy. Some abandoned oil wells have abundant geothermal resources and converting them into geothermal wells for heat extraction can significantly reduce costs and improve economic efficiency. Moreover, the reservoirs that reach the economic limit of water cut can also be used for heat extraction to achieve co-production of heat and oil. Currently, most research on heat extraction from geothermal well patterns focuses on fixed well patterns or/and does not consider oil-water two-phase flows. However, the oil-water flow and heat transfer characteristics of different well patterns are of great significance for the design and adjustment of geothermal development schemes of oilfields. Therefore, a heat-flow coupling model considering oil-water two-phase flows was established. The production characteristics of diverse well patterns were compared, such as production temperature, pressure difference between injection and production, liquid production, and oil production. Research shows that the maximum difference of the production temperatures and pressure differences between diverse well patterns can reach 22.56 K and 1.03 MPa, respectively. When the injection wells and production wells are cross-symmetrically distributed, the heat extraction system has the highest production temperature and oil production, as well as a lower pressure difference between injection and production. The research reveals the evolution characteristics of temperature and pressure fields during heat extraction from different well patterns, providing a basis for designing and adjusting the well patterns and some guidance for the evaluation of the co-production of heat and oil in oilfields.
[1] |
谢文苹,路睿,张盛生,等. 青海共和盆地干热岩勘查进展及开发技术探讨[J]. 石油钻探技术,2020,48(3):77–84. doi: 10.11911/syztjs.2020042
XIE Wenping, LU Rui, ZHANG Shengsheng, et al. Progress in hot dry rock exploration and a discussion on development technology in the Gonghe Basin of Qinghai[J]. Petroleum Drilling Techniques, 2020, 48(3): 77–84. doi: 10.11911/syztjs.2020042
|
[2] |
BP. Statistical review of world energy 2020[R]. London: BP, 2020.
|
[3] |
BU Xianbiao, MA Weibin, LI Huashan. Geothermal energy production utilizing abandoned oil and gas wells[J]. Renewable Energy, 2012, 41: 80–85. doi: 10.1016/j.renene.2011.10.009
|
[4] |
姜光政,高堋,饶松,等. 中国大陆地区大地热流数据汇编(第四版)[J]. 地球物理学报,2016,59(8):2892–2910. doi: 10.6038/cjg20160815
JIANG Guangzheng, GAO Peng, RAO Song, et al. Compilation of heat flow data in the continental area of China (4th ed)[J]. Chinese Journal of Geophysics, 2016, 59(8): 2892–2910. doi: 10.6038/cjg20160815
|
[5] |
LI Kewen, BIAN Huiyuan, LIU Changwei, et al. Comparison of geothermal with solar and wind power generation systems[J]. Renewable and Sustainable Energy Reviews, 2015, 42: 1464–1474. doi: 10.1016/j.rser.2014.10.049
|
[6] |
KUJAWA T, NOWAK W, STACHEL A A. Analysis of the exploitation of existing deep production wells for acquiring geothermal energy[J]. Journal of Engineering Physics and Thermophysics, 2005, 78(1): 127–135. doi: 10.1007/s10891-005-0038-1
|
[7] |
CAULK R A, TOMAC I. Reuse of abandoned oil and gas wells for geothermal energy production[J]. Renewable Energy, 2017, 112: 388–397. doi: 10.1016/j.renene.2017.05.042
|
[8] |
宋先知,张逸群,李根生,等. 雄安新区地热井同轴套管闭式循环取热技术研究[J]. 天津大学学报(自然科学与工程技术版),2021,54(9):971–981.
SONG Xianzhi, ZHANG Yiqun, LI Gensheng, et al. Performance study of the downhole coaxial closed-loop heat exchange technology in Xiong'an New Area[J]. Journal of Tianjin University(Science and Technology), 2021, 54(9): 971–981.
|
[9] |
于超,张逸群,宋先知,等. 井下同轴闭式地热系统循环工质综合评价优选[J]. 石油钻探技术,2021,49(5):101–107. doi: 10.11911/syztjs.2021066
YU Chao, ZHANG Yiqun, SONG Xianzhi, et al. Comprehensive evaluation and optimization of circulating working fluids in the coaxial borehole heat exchanger closed-loop geothermal system[J]. Petroleum Drilling Techniques, 2021, 49(5): 101–107. doi: 10.11911/syztjs.2021066
|
[10] |
宋先知,许富强,宋国锋. 废弃井地热能开发技术现状与发展建议[J]. 石油钻探技术,2020,48(6):1–7. doi: 10.11911/syztjs.2020120
SONG Xianzhi, XU Fuqiang, SONG Guofeng. Technical status and development suggestions in exploiting geothermal energy from abandoned wells[J]. Petroleum Drilling Techniques, 2020, 48(6): 1–7. doi: 10.11911/syztjs.2020120
|
[11] |
GONG Bin, LIANG Hongbin, XIN Shouliang, et al. Numerical studies on power generation from co-produced geothermal resources in oil fields and change in reservoir temperature[J]. Renewable Energy, 2013, 50: 722–731. doi: 10.1016/j.renene.2012.07.026
|
[12] |
WESTPHAL D, WEIJERMARS R. Economic appraisal and scoping of geothermal energy extraction projects using depleted hydrocarbon wells[J]. Energy Strategy Reviews, 2018, 22: 348–364. doi: 10.1016/j.esr.2018.10.008
|
[13] |
NGHIEM L, COLLINS D A, SHARMA R. Seventh SPE comparative solution project: modelling of horizontal wells in reservoir simulation[R]. SPE 21221, 1991.
|
[14] |
朱广海,刘章聪,熊旭东,等. 电加热稠油热采井筒温度场数值计算方法[J]. 石油钻探技术,2019,47(5):110–115. doi: 10.11911/syztjs.2019109
ZHU Guanghai, LIU Zhangcong, XIONG Xudong, et al. Numerical calculation method of the wellbore temperature field for electric heating heavy oil thermal recovery[J]. Petroleum Drilling Techniques, 2019, 47(5): 110–115. doi: 10.11911/syztjs.2019109
|
[15] |
蔡少斌,杨永飞,刘杰. 考虑热流固耦合作用的多孔介质孔隙尺度两相流动模拟[J]. 力学学报,2021,53(8):2225–2234. doi: 10.6052/0459-1879-21-294
CAI Shaobin, YANG Yongfei, LIU Jie. Pore-scale simulation of multiphase flow considering thermo-hydro-mechanical coupling effect in porous media[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2225–2234. doi: 10.6052/0459-1879-21-294
|
[16] |
HOLZBECHER E O. Modeling density-driven flow in porous media: Principles, numerics, software[M]. Berlin: Springer, 1998.
|
[17] |
HEMMATI-SARAPARDEH A, SHOKROLLAHI A, TATAR A, et al. Reservoir oil viscosity determination using a rigorous app-roach[J]. Fuel, 2014, 116: 39–48. doi: 10.1016/j.fuel.2013.07.072
|
[18] |
WANG Jing, LIU Jungang, LI Zhaoguo, et al. Synchronous injection-production energy replenishment for a horizontal well in an ultra-low permeability sandstone reservoir: a case study of Changqing Oilfield in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2020, 47(4): 827–835. doi: 10.1016/S1876-3804(20)60098-2
|
[19] |
XU Fuqiang, SONG Xianzhi, SONG Guofeng, et al. Numerical studies on heat extraction evaluation and multi-objective optimization of abandoned oil well patterns in intermittent operation mode[J]. Energy, 2023, 269: 126777. doi: 10.1016/j.energy.2023.126777
|
[20] |
GeoMark Research. RFD base (reservoir fluid database)[Z]. 2003.
|
[21] |
宋先知,许富强,姬佳炎,等. 多层合采油藏废弃井网取热性能评价[J]. 天然气工业,2022,42(4):54–62. doi: 10.3787/j.issn.1000-0976.2022.04.005
SONG Xianzhi, XU Fuqiang, JI Jiayan, et al. Evaluation on the heat extraction performance of abandoned well pattern in multi-layer commingled production oil reservoirs[J]. Natural Gas Industry, 2022, 42(4): 54–62. doi: 10.3787/j.issn.1000-0976.2022.04.005
|
[22] |
BROOKS R H, COREY A T. Properties of porous media affecting fluid flow[J]. Journal of the Irrigation and Drainage Division, 1966, 92(2): 61–88. doi: 10.1061/JRCEA4.0000425
|
[23] |
石宇. 多分支井循环二氧化碳开采地热机理与参数研究[D]. 北京:中国石油大学(北京),2020.
SHI Yu. Study on mechanism and parameters of geothermal exploitation using multilateral wells with CO2 as working fluid[D]. Beijing: China University of Petroleum(Beijing), 2020.
|
[24] |
EPPELBAUM L, KUTASOV I, PILCHIN A. Thermal properties of rocks and density of fluids[M]//EPPELBAUM L, KUTASOV I, PILCHIN A. Applied geothermics. Berlin: Springer, 2014: 99-149.
|
[25] |
宋子豪. 油田废弃井网循环取热规律与方案优化研究 [D]. 北京:中国石油大学(北京), 2023.
SONG Zihao. Study on circulation heat extraction rule and scheme optimization of abandoned oilfield well pattern[D]. Beijing: China University of Petroleum (Beijing), 2023.
|
[26] |
XU Fuqiang, SONG Xianzhi, SONG Zihao, et al. Heat extraction and interlayer interference in heterogeneous multi-layer commingled production oil reservoir[R]. ARMA-2022-0504, 2022.
|
[27] |
ABDELGAWAD A, MALEKZADEH D. Determination of the drainage area of horizontal wells in the presence of vertical wells: effect of reservoir and well parameters[J]. Journal of Canadian Petroleum Technology, 2001, 40(10): 45–54.
|
1. |
张炜,邵明娟,王海华,姚树青. 日本砂层型天然气水合物研发工作最新进展. 海洋地质前沿. 2025(02): 1-11 .
![]() | |
2. |
郑武强,韩玉朋,王利卿,马玉钦,张育洋,王浩,王凯. 形状记忆材料在土木建筑领域的研究与应用. 福建建材. 2024(04): 122-126+72 .
![]() | |
3. |
Tingting Luo,Jianlin Song,Xiang Sun,Fanbao Cheng,Madhusudhan Bangalore Narasimha Murthy,Yulu Chen,Yi Zhao,Yongchen Song. Numerical study on gas production via a horizontal well from hydrate reservoirs with different slope angles in the South China Sea. Deep Underground Science and Engineering. 2024(02): 171-181 .
![]() |
|
4. |
张炜,邵明娟,王海华,姚树青. 日本浅表层水合物勘查试采进展. 中国地质调查. 2024(03): 117-126 .
![]() | |
5. |
赵义,陈云龙,阮海龙,汪成龙,刘协鲁,刘海龙. 新型天然气水合物保温保压取样器具研制. 地质装备. 2024(S1): 139-144 .
![]() | |
6. |
张炜,邵明娟,姚树青. 日本天然气水合物开发工作发展历程分析及对我国的启示. 中外能源. 2023(08): 15-22 .
![]() | |
7. |
Qiu-ping Lu,Yan-jiang Yu,Xie Wen-wei,Jin-qiang Liang,Jing-an Lu,Ben-chong Xu,Hao-xian Shi,Hao-yu Yu,Ru-lei Qin,Xing-chen Li,Bin Li. Design and feasibility analysis of a new completion monitoring technical scheme for natural gas hydrate production tests. China Geology. 2023(03): 466-475 .
![]() |
|
8. |
王志刚,巩建雨,吴纪修,尹浩,施山山,闫家,李小洋. 海域天然气水合物钻完井关键技术研究进展. 科技导报. 2023(20): 71-78 .
![]() | |
9. |
刘协鲁,阮海龙,赵义,蔡家品,陈云龙,梁涛,邓都都,刘智键,刘广治,郭强. 天然气水合物岩心保压转移与测试系统研发现状分析. 钻探工程. 2023(S1): 26-31 .
![]() | |
10. |
Azza Hashim Abbas,Ramzi A.Abd Alsaheb,Jaafar Kamil Abdullah. Comparative study of natural chemical for enhanced oil recovery:Focus on extraction and adsorption at quartz sand surface. Petroleum. 2023(01): 83-93 .
![]() |
|
11. |
Xiangyu Fang,Dianheng Yang,Fulong Ning,Linjie Wang,Zhichao Liu,Yanjiang Yu,Wenwei Xie,Hongfeng Lu,Yanlong Li,Meng Xu. Experimental study on sand production and coupling response of silty hydrate reservoir with different contents of fine clay during depressurization. Petroleum. 2023(01): 72-82 .
![]() |
|
12. |
欧芬兰,于彦江,寇贝贝,陈靓. 水合物藏的类型、特点及开发方法探讨. 海洋地质与第四纪地质. 2022(01): 194-213 .
![]() | |
13. |
王志远,张洋洋,张剑波,杨贺民. 海域天然气水合物经济化钻采平台及安全钻井技术分析与思考. 船舶. 2022(05): 1-20 .
![]() | |
14. |
邵明娟,王平康,吴庐山,张炜,田黔宁. 日本海域天然气水合物试采结果对比分析. 海洋地质前沿. 2022(12): 8-15 .
![]() | |
15. |
孔德涛,宋吉明,阎兴涛,陈旭. 形状记忆聚合物在防砂中的应用. 石油化工应用. 2022(11): 44-48 .
![]() | |
16. |
张涛,冉皞,徐晶晶,沙志彬,姜雅,王琨. 日本天然气水合物研发进展与技术方向. 地球学报. 2021(02): 196-202 .
![]() | |
17. |
刘协鲁,阮海龙,赵义,蔡家品,陈云龙,梁涛,李春,刘海龙,邓都都. 海域天然气水合物保温保压取样钻具研究与应用进展. 钻探工程. 2021(07): 33-39 .
![]() | |
18. |
罗天雨. 一种采用直井井组细分层压裂注热水开采天然气水合物的工艺方案. 海洋技术学报. 2020(02): 98-104 .
![]() | |
19. |
孙金声,雷少飞,白英睿,王玺,吕开河,柳丙善,王金堂,戴彩丽,刘敬平. 智能材料在钻井液堵漏领域研究进展和应用展望. 中国石油大学学报(自然科学版). 2020(04): 100-110 .
![]() | |
20. |
任红. 南海天然气水合物取样技术现状及发展建议. 石油钻探技术. 2020(04): 89-93 .
![]() | |
21. |
祝有海,张永勤,方慧,卢振权,庞守吉,张帅,肖睿. 中国陆域天然气水合物调查研究主要进展. 中国地质调查. 2020(04): 1-9 .
![]() | |
22. |
李莅临,杨进,路保平,柯珂,王磊,陈柯锦. 深水水合物试采过程中地层沉降及井口稳定性研究. 石油钻探技术. 2020(05): 61-68 .
![]() | |
23. |
李守定,孙一鸣,陈卫昌,于志全,周忠鸣,刘丽楠,赫建明,张召彬,李晓. 天然气水合物开采方法及海域试采分析. 工程地质学报. 2019(01): 55-68 .
![]() | |
24. |
李子丰,韩杰. 海底天然气水合物开采的环境安全性探讨. 石油钻探技术. 2019(03): 127-132 .
![]() | |
25. |
沙志彬,许振强,王平康,梁金强,万晓明,王力峰,苏丕波. 世界天然气水合物研究发展对我国加快推进其产业化的启示. 海洋地质前沿. 2019(08): 1-10 .
![]() | |
26. |
李文龙,高德利,杨进. 海域含天然气水合物地层钻完井面临的挑战及展望. 石油钻采工艺. 2019(06): 681-689 .
![]() | |
27. |
杜卫刚,钱旭瑞,谢梦春,王超,顾冰. 日本天然气水合物完井试采技术分析. 油气井测试. 2019(06): 49-53 .
![]() | |
28. |
王淑玲,孙张涛. 全球天然气水合物勘查试采研究现状及发展趋势. 海洋地质前沿. 2018(07): 24-32 .
![]() | |
29. |
米自为,杨欣宇,杨君. 天然气水合物中国专利分析. 决策咨询. 2018(03): 81-85 .
![]() | |
30. |
魏伟,张金华,于荣泽,林斌斌,陈龙桥,彭涌,肖红平. 2017年天然气水合物研发热点回眸. 科技导报. 2018(01): 83-90 .
![]() | |
31. |
张炜,邵明娟,姜重昕,田黔宁. 世界天然气水合物钻探历程与试采进展. 海洋地质与第四纪地质. 2018(05): 1-13 .
![]() | |
32. |
王敏生,光新军,孔令军. 形状记忆聚合物在石油工程中的应用前景. 石油钻探技术. 2018(05): 14-20 .
![]() |