Citation: | WANG Yanwen, YE Haichao. Current status and development trend of measurement & control while drilling technology [J]. Petroleum Drilling Techniques,2024, 52(1):122-129. DOI: 10.11911/syztjs.2024017 |
Measurement & control while drilling technology is a broad term for measurement while drilling, logging while drilling, and control while drilling. It represents high-end technologies in petroleum engineering and forms the core of automated and intelligent drilling. The evolution of measurement & control while drilling technology has provided an important tool for oil & gas exploration and development, significantly enhancing operational efficiency and reducing operational cost and comprehensive oil & gas costs. This paper offers a comprehensive review of the research progress in measurement & control while drilling technology within major international oil service companies such as Schlumberger, Baker Hughes, and Halliburton. It analyzes the demand for measurement & control while drilling technology in oil & gas exploration and development. Furthermore, the development direction of measurement & control while drilling technology was clarified, and suggestions on the development of measurement & control while drilling technology in China were put forward. Finally, the development focus of measurement & control while drilling technology was summarized, so as to promote the rapid development of measurement & control while drilling technology in China and elevate the overall standard of measurement & control while drilling technology.
[1] |
贾梦之,耿艳峰,闫宏亮,等. 高速泥浆脉冲数据传输技术综述[J]. 仪器仪表学报,2018,39(12):160–170.
JIA Mengzhi, GENG Yanfeng, YAN Hongliang, et al. Review of high-speed mud pulse telemetry technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(12): 160–170.
|
[2] |
陈兴祥,刘虎,冉富强. 电磁波随钻测量系统(EMWD)现状分析[J]. 中国石油和化工标准与质量,2017,37(19):133–135.
CHEN Xingxiang, LIU Hu, RAN Fuqiang. Analysis of the current status of electromagnetic wave measurement while drilling (EMWD) systems[J]. China Petroleum and Chemical Standard and Quality, 2017, 37(19): 133–135.
|
[3] |
Schlumberger. xBolt G2 accelerated drilling service[EB/OL]. [2020-09-08].https://www.slb.com/drilling/surface-and-downhole-logging/measurements-while-drilling-services/xbolt-g2-accelerated-drilling-service.
|
[4] |
NOV. BlackStar EM MWD tool[EB/OL]. [2020-09-08]. https://www.nov.com/products/blackstar-em-mwd-tool.
|
[5] |
NOV. BlackStar II MWD tools[EB/OL]. [2020-09-08]. https://www.nov.com/products/blackstar-ii-mwd-tools.
|
[6] |
许玛丽. 国内外随钻测量技术现状与展望[J]. 化工管理,2019(17):109–110.
XU Mali. Current status and prospects of measurement while drilling technology at home and abroad[J]. Chemical Enterprise Management, 2019(17): 109–110.
|
[7] |
胡永建,黄衍福,李显义. 磁耦合有缆钻杆关键技术与发展趋势[J]. 石油钻采工艺,2020,42(1):21–29.
HU Yongjian, HUANG Yanfu, LI Xianyi. Key technologies and development trend of magnetic-coupling wired drill pipe[J]. Oil Drilling & Production Technology, 2020, 42(1): 21–29.
|
[8] |
Schlumberger. Orion II data compression platform[EB/OL]. [2020-09-08]. https://www.slb.com/drilling/surface-and-downhole-logging/measurements-while-drilling-services/orion-data-compression-mwd.
|
[9] |
王丽忱,朱桂清,甄鉴. 随钻测井数据传输技术新进展[J]. 石油科技论坛,2014,33(6):42–45.
WANG Lichen, ZHU Guiqing, ZHEN Jian. New progress in LWD data transmission technology[J]. Petroleum Science and Technology Forum, 2014, 33(6): 42–45.
|
[10] |
WHEELER A J, BILLINGS T, RENNIE A, et al. The introduction of an at-bit natural gamma ray imaging tool reduces risk associated with real-time geosteering decisions in coalbed methane horizontal wells[R]. SPWLA 2012-167, 2012.
|
[11] |
ORTENZI L, DUBOURG I, VAN OS R, et al. New azimuthal resistivity and high-resolution imager facilitates formation evaluation and well placement of horizontal slim boreholes[J]. Petrophysics, 2012, 53(3): 197–207.
|
[12] |
PITCHER J, SCHAFER D, BOTTERELL P. A new azimuthal gamma at bit imaging tool for geosteering thin reservoirs[R]. SPE 118328S, 2009.
|
[13] |
PRAMMER M G, MORYS M, KNIZHNIK S, et al. Field testing of an advanced LWD imaging resistivity tool[R]. SPWLA-2007-AA, 2007.
|
[14] |
RITTER R N, CHEMALI R, LOFTS J, et al. High resolution visualization of near wellbore geology using while-drilling electrical images[R]. SPWLA-2004-PP, 2004.
|
[15] |
刘乃震,王忠,刘策. 随钻电磁波传播方位电阻率仪地质导向关键技术[J]. 地球物理学报,2015,58(5):1767–1775.
LIU Naizhen, WANG Zhong, LIU Ce. Theories and key techniques of directional electromagnetic propagation resistivity tool for geosteering applications while drilling[J]. Chinese Journal of Geophysics, 2015, 58(5): 1767–1775.
|
[16] |
倪卫宁,张晓彬,万勇,等. 随钻方位电磁波电阻率测井仪分段组合线圈系设计[J]. 石油钻探技术,2017,45(2):115–120.
NI Weining, ZHANG Xiaobin, WAN Yong, et al. The design of the coil system in LWD tools based on azimuthal electromagnetic-wave resistivity combined with sections[J]. Petroleum Drilling Techniques, 2017, 45(2): 115–120.
|
[17] |
侯亮,杨虹,刘知鑫. 2019测井技术发展动向与展望[J]. 世界石油工业,2019,26(6):58–63.
HOU Liang, YANG Hong, LIU Zhixin. Development and prospect of well logging technologies in 2019[J]. World Petroleum Industry, 2019, 26(6): 58–63.
|
[18] |
张桂清. 随钻测井发展历程及四大服务公司的随钻测井技术[R]. 北京:中国石油集团经济技术研究院,2011.
ZHANG Guiqing. The development history of logging while drilling and the logging while drilling technology of the four major service companies[R]. Beijing: China Petroleum Corporation Economic and Technological Research Institute, 2011.
|
[19] |
刘建立,陈会年,高炳堂. 国外随钻地层压力测量系统及其应用[J]. 石油钻采工艺,2010,32(1):94–98.
LIU Jianli, CHEN Huinian, GAO Bingtang. Foreign measurement system for formation pressure while drilling and its application[J]. Oil Drilling & Production Technology, 2010, 32(1): 94–98.
|
[20] |
卫建清,何晓,陈浩,等. 随钻四极源声波测井多模式采集测量TTI地层各向异性的研究[J]. 地球物理学报,2018,61(2):792–802.
WEI Jianqing, HE Xiao, CHEN Hao, et al. Inversion of anisotropy in a TTI stratum using quadrupole acoustic LWD and multimode acquisition[J]. Chinese Journal of Geophysics, 2018, 61(2): 792–802.
|
[21] |
Schlumberger. GeoSphere 360 3D reservoir mapping-while-drilling service[EB/OL]. [2023-10-25]. https://www.slb.com/-/media/files/drilling/product-sheet/geosphere-360-tt-ps.ashx.
|
[22] |
Schlumberger. PureFlex surface fluids logging while-drilling service[EB/OL]. [2023-10-25]. https://www.slb.com/-/media/files/drilling/product-sheet/pureflex-ps.ashx.
|
[23] |
冯定,王鹏,张红,等. 旋转导向工具研究现状及发展趋势[J]. 石油机械,2021,49(7):8–15.
FENG Ding, WANG Peng, ZHANG Hong, et al. Research status and development trend of rotary steerable system Tool[J]. China Petroleum Machinery, 2021, 49(7): 8–15.
|
[24] |
MATHEUS J, IGNOVA M, HORNBLOWER P. A hybrid approach to closed-loop directional drilling control using rotary steerable systems[J]. IFAC Proceedings Volumes, 2012, 45(8): 84–89. doi: 10.3182/20120531-2-NO-4020.00008
|
[25] |
宣扬,刘珂,郭科佑,等. 顺北超深水平井环保耐温低摩阻钻井液技术[J]. 特种油气藏,2020,27(3):166–168.
XUAN Yang, LIU Ke, GUO Keyou, et al. Environmental anti-temperature low friction drilling fluid technology of ultra-deep horizontal well in Shunbei Oil & Gas Field[J]. Specail Oil & Gas Reservoirs, 2020, 27(3): 163–168.
|
[26] |
陈宗琦,刘景涛,陈修平. 顺北油气田古生界钻井提速技术现状与发展建议[J]. 石油钻探技术,2023,51(2):1–6.
CHEN Zongqi, LIU Jingtao, CHEN Xiuping. Up-to-date ROP improvement technologies for drilling in the Paleozoic of Shunbei Oil & Gas Field and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2023, 51(2): 1–6.
|
[27] |
赵海洋,范胜,连世鑫,等. 顺北油气田用抗高温弱凝胶防气侵钻井液体系[J]. 钻井液与完井液,2023,40(3):332–339.
ZHAO Haiyang, FAN Sheng, LIAN Shixin, et al. Study on high temperature resistant weak gel anti gas invasion drilling fluid system in Shunbei Oil & Gas Field[J]. Drilling Fluid & Completion Fluid, 2023, 40(3): 332–339.
|
[28] |
白彬珍,曾义金,葛洪魁. 顺北 56X 特深水平井钻井关键技术[J]. 石油钻探技术,2022,50(6):49–55.
BAI Binzhen, ZENG Yijin, GE Hongkui. Key technologies for the drilling of ultra-deep horizontal Well Shunbei 56X[J]. Petroleum Drilling Techniques, 2022, 50(6): 49–55.
|
[29] |
刘湘华,杜欢,刘彪,等. 顺北Ⅳ号条带超深高温定向井钻井关键技术[J]. 石油钻采工艺,2022,44(6):665–670.
LIU Xianghua, DU Huan, LIU Biao, et al. Key technology of directional drilling in the ultra-deep high-temperature IV belt, the Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2022, 44(6): 665–670.
|
[30] |
刘湘华,刘彪,杜欢,等. 顺北油气田断裂带超深水平井优快钻井技术[J]. 石油钻探技术,2022,50(4):11–17.
LIU Xianghua, LIU Biao, DU Huan, et al. Optimal and fast drilling technologies for ultra-deep horizontal wells in the fault zones of the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 11–17.
|
1. |
肖阳,马中慧,刘书云,韩晨辉,夏瀚涛,张进源. 珠江口盆地潜山储层地质力学及压裂参数优化研究. 科学技术与工程. 2024(04): 1392-1401 .
![]() | |
2. |
郭鹏,李晓,李守定,郑博,毛天桥. 真三轴应力状态下海相与陆相页岩射孔压裂裂缝扩展规律对比研究. 工程地质学报. 2024(04): 1273-1280 .
![]() | |
3. |
刘星,邱建,陈作,张旭东,李双明,齐自立. 基于八叉树网格的页岩压裂复杂缝网面积计算方法. 石油钻探技术. 2024(06): 117-125 .
![]() | |
4. |
陈珂,于志豪,王守毅,任岚,宋雯静,林然. 断层附近非均匀应力场页岩压裂缝网扩展模拟. 断块油气田. 2023(02): 213-221 .
![]() | |
5. |
张莉娜,任建华,胡春锋. 常压页岩气立体开发特征及缝网干扰规律研究. 石油钻探技术. 2023(05): 149-155 .
![]() | |
6. |
Guang-Long Sheng,Hui Zhao,Jia-Ling Ma,Hao Huang,Hai-Yang Deng,Wen-Tao Zhan,Yu-Yang Liu. A new approach for flow simulation in complex hydraulic fracture morphology and its application: Fracture connection element method. Petroleum Science. 2023(05): 3002-3012 .
![]() |
|
7. |
沈骋,范宇,曾波,郭兴午. 渝西区块页岩气储层改造优化对策与适应性分析. 油气地质与采收率. 2022(02): 131-139 .
![]() | |
8. |
蒋佩,曾凌翔,朱炬辉,张俊成. 湖北深层页岩气水平井储层改造关键技术. 油气井测试. 2022(02): 31-35 .
![]() | |
9. |
马阔,王雷,许文俊,赵彦昕,袁勇,陈曦宇,张烨. 湖相页岩水力压裂裂缝穿层扩展规律物理模拟. 中国科技论文. 2022(05): 539-545 .
![]() | |
10. |
刘雨舟,张志坚,王磊,何国鸿. 国内变黏滑溜水研究进展及在川渝非常规气藏的应用. 石油与天然气化工. 2022(03): 76-81+90 .
![]() | |
11. |
马建民,马可欣,张富美,李小娜,杜玉昆,赵博,赵玉明. 超临界CO_2压裂起裂压力预测方法. 断块油气田. 2022(03): 295-301 .
![]() | |
12. |
赵志红,金浩增,郭建春,陈孟婷,卢聪. 水化作用下深层页岩软化本构模型研究. 岩石力学与工程学报. 2022(S2): 3189-3197 .
![]() | |
13. |
何颂根,冉旭,于丹,王峻峰,邹枫. 页岩多重孔隙水相自吸能力评价. 断块油气田. 2022(05): 598-603 .
![]() | |
14. |
宋毅,林然,黄浩勇,任岚,岳文翰,孙映. 深层页岩气水平井压裂异步起裂裂缝延伸模拟与调控. 大庆石油地质与开发. 2022(05): 145-152 .
![]() | |
15. |
徐栋,王玉斌,白坤森,朱卫平,刘川庆,李兵,何朋勃. 煤系非常规天然气一体化压裂液体系研究与应用. 煤田地质与勘探. 2022(10): 35-43 .
![]() | |
16. |
蒋海,肖阳,王栋,刘子平,王家豪,赵地,邹龙庆. 页岩气体积改造人工缝网优化设计. 特种油气藏. 2022(05): 154-160 .
![]() | |
17. |
夏阳,韦世明,金衍,陈康平. 适用于深层页岩气井生产模拟和预测的自扩散流热耦合模型. 天然气工业. 2021(02): 111-118 .
![]() | |
18. |
邢德钢,崔连可,王树森,蒋尔梁,余小燕,杨琪. 泌阳凹陷陆相页岩复杂裂缝起裂及扩展研究. 石油地质与工程. 2021(02): 93-97 .
![]() | |
19. |
张红杰,刘欣佳,张潇,张遂安,邵冰冰. 煤系储层综合开发中的压裂射孔方案优化研究. 特种油气藏. 2021(01): 154-160 .
![]() | |
20. |
刘威. 大牛地气田薄储层控缝高压裂工艺技术. 断块油气田. 2021(02): 284-288 .
![]() | |
21. |
顾浩,尚根华,李慧莉,王强,朱莲花,赵锐,康志江,李王鹏. 基于井温的超深断溶体油藏油井动用深度计算. 特种油气藏. 2021(02): 57-62 .
![]() | |
22. |
赵金洲,任岚,蒋廷学,胡东风,吴雷泽,吴建发,尹丛彬,李勇明,胡永全,林然,李小刚,彭瑀,沈骋,陈曦宇,尹庆,贾长贵,宋毅,王海涛,李远照,吴建军,曾斌,杜林麟. 中国页岩气压裂十年:回顾与展望. 天然气工业. 2021(08): 121-142 .
![]() | |
23. |
熊健,刘峻杰,吴俊,刘向君,王振林,梁利喜,张磊. 致密储层压裂缝扩展规律与可压裂性评价. 天然气地球科学. 2021(10): 1581-1591 .
![]() | |
24. |
陶祖文,李钦,徐力群,徐单峰. 四川盆地永川区块五峰组—龙马溪组深层页岩可压性评价. 天然气技术与经济. 2020(05): 7-12+27 .
![]() | |
25. |
石林,张鲲鹏,慕立俊. 页岩油储层压裂改造技术问题的讨论. 石油科学通报. 2020(04): 496-511 .
![]() |