ZHOU Jun, SHI Ye, LIANG Guangchuan, et al. Optimization of partial-pressure periodic water injection in oilfield under time-of-use electricity price [J]. Petroleum Drilling Techniques, 2024, 52(3):106-111. DOI: 10.11911/syztjs.2024016
Citation: ZHOU Jun, SHI Ye, LIANG Guangchuan, et al. Optimization of partial-pressure periodic water injection in oilfield under time-of-use electricity price [J]. Petroleum Drilling Techniques, 2024, 52(3):106-111. DOI: 10.11911/syztjs.2024016

Optimization of Partial-Pressure Periodic Water Injection in Oilfield under Time-of-Use Electricity Price

More Information
  • Received Date: July 03, 2023
  • Revised Date: March 22, 2024
  • Accepted Date: May 30, 2024
  • Available Online: June 02, 2024
  • In order to reduce the throttling loss of the valve group caused by the inconsistent demand pressure of each water injection well, a mathematical model of partial-pressure periodic water injection under time-of-use (TOU) electricity price was established. The model took the lowest total energy consumption cost of the pump station as the objective function and the service requirements of the pump assembly in the station and water injection well outside the station as the constraint conditions. Modeling programming was performed with mathematical planning and a optimization general algebraic modeling system (GAMS). The embedded branch-and-reduce optimization navigator (BARON) solver was called to solve the problem. According to the actual water injection situation, two operation schemes of cross water injection and sequential water injection were considered in each pressure range, and the best water injection scheme was determined by comparative analysis. The results show that after optimization, the average throttling loss of low-pressure and medium-pressure water injection well group is reduced by about 7 MPa and 3 MPa, respectively. The partial-pressure periodic water injection under TOU electricity price has good economic benefits, which can reduce the energy consumption cost within one period by about 13000 yuan and greatly reduce the energy consumption cost caused by throttling loss in site. Compared with cross water injection, sequential water injection has better practical value and operability and can provide some reference for the actual operation and production of the site.

  • [1]
    王涛,李尧,何辉. 考虑压力约束的精细分层注水耦合调配模型[J]. 石油钻探技术,2023,51(2):95–101. doi: 10.11911/syztjs.2023012

    WANG Tao, LI Yao, HE Hui. A coupling allocation model of finely layered water injection considering pressure constraint[J]. Petroleum Drilling Techniques, 2023, 51(2): 95–101. doi: 10.11911/syztjs.2023012
    [2]
    孙鹏,何祖清,彭汉修. 基于双向数据无缆传输的分层注水技术[J]. 石油钻采工艺,2023,45(6):783–788.

    SUN Peng, HE Zuqing, PENG Hanxiu. Separate-layer waterflooding technology based on bidirectional cable-less data transmission[J]. Oil Drilling & Production Technology, 2023, 45(6): 783–788.
    [3]
    杨玲智,周志平,杨海恩,等. 桥式同心井下恒流分层注水技术[J]. 石油钻探技术,2022,50(4):104–108. doi: 10.11911/syztjs.2022051

    YANG Lingzhi, ZHOU Zhiping, YANG Haien, et al. Downhole constant-flow stratified water injection technology with concentric bridge[J]. Petroleum Drilling Techniques, 2022, 50(4): 104–108. doi: 10.11911/syztjs.2022051
    [4]
    宋来明,王春秋,卢川,等. 数据驱动的复杂油藏注采生产优化技术研究进展[J]. 石油钻采工艺,2022,44(2):253–260.

    SONG Laiming, WANG Chunqiu, LU Chuan, et al. Research progress of data-driven injection production optimization of complex oil reservoirs[J]. Oil Drilling & Production Technology, 2022, 44(2): 253–260.
    [5]
    赵广渊,王天慧,杨树坤,等. 渤海油田液压控制智能分注优化关键技术[J]. 石油钻探技术,2022,50(1):76–81. doi: 10.11911/syztjs.2021125

    ZHAO Guangyuan, WANG Tianhui, YANG Shukun, et al. Key optimization technologies of intelligent layered water injection with hydraulic control in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(1): 76–81. doi: 10.11911/syztjs.2021125
    [6]
    贾贻勇,李永康. 胜坨油田套损井分层注水及测调技术[J]. 石油钻探技术,2021,49(2):107–112. doi: 10.11911/syztjs.2020137

    JIA Yiyong, LI Yongkang. Techniques of layering injection and the measurement-adjustment towards wells with casing damage in Shengtuo Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(2): 107–112. doi: 10.11911/syztjs.2020137
    [7]
    赵洪绪,柴世超,毛敏,等. 基于长短期记忆神经网络模型的分层注水优化方法[J]. 中国海上油气,2023,35(4):127–137.

    ZHAO Hongxu, CHAI Shichao, MAO Min, et al. Optimization of stratified water injection based on long-short term memory neural network model[J]. China Offshore Oil and Gas, 2023, 35(4): 127–137.
    [8]
    刘欢. 基于油田地面注水系统的优化技术研究[J]. 中文科技期刊数据库(引文版)工程技术,2023(5):189–192.

    LIU Huan. Research on optimization technology based on oilfield surface water injection system[J]. Chinese Science and Technology Journal Database (Citation Edition) Engineering Technology, 2023(5): 189–192.
    [9]
    周继德. 油田分压注水是重要的节能措施[J]. 中国能源,1993,15(9):46.

    ZHOU Jide. Partial pressure water injection is an important energy-saving measure in oilfield[J]. Energy of China, 1993, 15(9): 46.
    [10]
    刘永宁. 分压注水节能技术在油田的应用[J]. 中国石油和化工标准与质量,2019,39(8):212–213. doi: 10.3969/j.issn.1673-4076.2019.08.103

    LIU Yongning. Application of partial pressure water injection energy saving technology in oilfield[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(8): 212–213. doi: 10.3969/j.issn.1673-4076.2019.08.103
    [11]
    侯永宾,苏杰,陈宇翔,等. 分压注水节能技术在轮南油田的应用[J]. 化工设计通讯,2019,45(8):27–28. doi: 10.3969/j.issn.1003-6490.2019.08.019

    HOU Yongbin, SU Jie, CHEN Yuxiang, et al. Application of partial pressure water injection energy saving technology in Lunnan Oilfield[J]. Chemical Engineering Design Communication, 2019, 45(8): 27–28. doi: 10.3969/j.issn.1003-6490.2019.08.019
    [12]
    谭文捷. 国外某油田注水管网优化调整研究[J]. 北京石油化工学院学报,2023,31(2):44–48.

    TAN Wenjie. Research on optimization and adjustment of water injection pipe network in a foreign oilfield[J]. Journal of Beijing Institute of Petrochemical Technology, 2023, 31(2): 44–48.
    [13]
    白羽. 双管分压注水技术的研究与应用[J]. 化学工程与装备,2016(5):106–107.

    BAI Yu. Research and application of water injection technology with two separate pressure tubes[J]. Chemical Engineering & Equipment, 2016(5): 106–107.
    [14]
    段闯,赵辉,孙震,等. 桩西采油厂分压注水节能技术应用[J]. 石油石化节能,2020,10(11):13–15.

    DUAN Chuang, ZHAO Hui, SUN Zhen, et al. Application of partial pressure water injection and energy saving technology in Zhuangxi oil production plant[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2020, 10(11): 13–15.
    [15]
    王辉. 河口采油厂分压注水技术研究与应用[J]. 油气田地面工程,2018,37(11):12–16.

    WANG Hui. Study and application of the partial pressure water injection technology in Hekou oil production plant[J]. Oil-Gas Field Surface Engineering, 2018, 37(11): 12–16.
    [16]
    冯杰. 分压注水技术在小营油田的应用[J]. 精细石油化工进展,2020,21(1):13–15. doi: 10.3969/j.issn.1009-8348.2020.01.004

    FENG Jie. Application of partial pressure water injection technology in Xiaoying Oilfield[J]. Advances in Fine Petrochemicals, 2020, 21(1): 13–15. doi: 10.3969/j.issn.1009-8348.2020.01.004
    [17]
    刘斌. 油田注水系统数学建模与控制理论研究[D]. 青岛:中国石油大学(华东),2007.

    LIU Bin. Study on the mathematical modeling and control method for oilfield water flooding system[D]. Qingdao: China University of Petroleum(East China), 2007.
    [18]
    高振东. 延长油田注水开发技术与实践[M]. 北京:石油工业出版社,2018.

    GAO Zhendong. Water injection development technology and practice in Yanchang Oilfield[M]. Beijing: Petroleum Industry Press, 2018.
    [19]
    梁永图,周星远,邱睿,等. 大型环枝状油田注水管网系统运行优化[J]. 中国石油大学学报(自然科学版),2018,42(6):121–132. doi: 10.3969/j.issn.1673-5005.2018.06.014

    LIANG Yongtu, ZHOU Xingyuan, QIU Rui, et al. Optimal operation study on the large-scale looped and branched waterflooding pipeline network system of oilfields[J]. Journal of China University of Petroleum(Edition of Natural Science), 2018, 42(6): 121–132. doi: 10.3969/j.issn.1673-5005.2018.06.014
    [20]
    GB 50391—2014 油田注水工程设计规范[S].

    GB 50391—2014 Code for design of oilfield water injection engineering[S].
    [21]
    孙志璇. 面向电力市场的梯级水电站短期优化调度研究[D]. 兰州:兰州理工大学,2016.

    SUN Zhixuan. Study on short-term optimal operation of cascade hydropower stations in electricity market[D]. Lanzhou: Lanzhou University of Technology, 2016.
  • Related Articles

    [1]ZHANG Heng, YUAN Guangjie, NI Hongjian, YANG Henglin, FU Li, WANG Yuan. Experimental Study on the Suppression of Stick-Slip Vibration of PDC Bits during Rock Breaking by Composite Impact Load[J]. Petroleum Drilling Techniques, 2025, 53(2): 69-75. DOI: 10.11911/syztjs.2025007
    [2]QIN Jianyu, LI Bo, RAO Zhihua, JIN Yong, ZHANG Yong, LIU Yongfeng. Key Cementing Technologies for an Ultra-Deep Extended Reach Well in Enping 21–4 Oilfield, Eastern South China Sea[J]. Petroleum Drilling Techniques, 2025, 53(2): 30-37. DOI: 10.11911/syztjs.2025026
    [3]MA Jihe, GENG Tie, SONG Xiaowei, DI Mingli, YANG Bo. Drilling Fluid Technology for Ultra-Deep Extended Reach Wells in Enping 21−4 Oilfield, Eastern South China Sea[J]. Petroleum Drilling Techniques, 2025, 53(2): 21-29. DOI: 10.11911/syztjs.2025025
    [4]GUO Yongbin, ZUO Kun, DENG Chenghui, LI Jingjing, ZHANG Kai, LEI Hong. Key Drilling Technologies for Ultra-Deep Extended Reach Horizontal Well in Enping 21−4 Oilfield, Eastern South China Sea[J]. Petroleum Drilling Techniques, 2025, 53(2): 11-20. DOI: 10.11911/syztjs.2025021
    [5]LI Yan, HU Zhiqiang, XUE Yuzhi, LIANG Wenlong, TANG Wenquan, NIU Chengcheng. Key Drilling Technologies of Well Bin 4 under the Daily Rate System Management Mode[J]. Petroleum Drilling Techniques, 2022, 50(3): 34-38. DOI: 10.11911/syztjs.2021133
    [6]LIAN Zhanghua, LIU Yang, LIN Tiejun, LUO Zeli, MOU Yisheng. Fracture Analysis of 4(2)/1 REG Turbine Shaft Connection Thread under Complex Working Conditions[J]. Petroleum Drilling Techniques, 2018, 46(3): 53-58. DOI: 10.11911/syztjs.2018051
    [7]Su Feng, Zhang Weiguo, Li Zemin, Chang Yuanjiang, Chen Guoming. Application of Underwater GPS Positioning Technique in Wellhead Positioning of Liuhua 4-1 Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(3): 40-45. DOI: 10.3969/j.issn.1001-0890.2013.03.008
    [8]Zhang Jianping. Design Optimization and Effect Analysis of Fast Drilling PDC Bit for Well QG-1[J]. Petroleum Drilling Techniques, 2012, 40(6): 119-123. DOI: 10.3969/j.issn.1001-0890.2012.06.025
    [9]Zhang Yu, Zhang Guo, Xu Jiang, Gao Wei, Liu Guichuan. Application of Novel Polyamine Drilling Fluid in Mudstone Section of Well DuH 4[J]. Petroleum Drilling Techniques, 2012, 40(6): 33-37. DOI: 10.3969/j.issn.1001-0890.2012.06.007
    [10]Jin Yequan, Wang Maolin. PDC Bit Drilling Parameter Optimization Design Integrating Cost and Drilling Rate[J]. Petroleum Drilling Techniques, 2012, 40(5): 13-16. DOI: 10.3969/j.issn.1001-0890.2012.05.003
  • Cited by

    Periodical cited type(30)

    1. 许朝辉,查春青,范进朝,张谧. 复合脉冲钻井提速工具的设计及试验分析. 石油矿场机械. 2025(01): 1-5 .
    2. 陈东方,全兵,肖新启,张光宇,陈志华. 轴扭耦合冲击器结构设计与室内试验. 石油钻探技术. 2024(01): 78-83 . 本站查看
    3. 刘义彬,黄峰,康建涛,周灏,季小娜,左岳. 近钻头旋扭冲击器结构设计与试验. 石油矿场机械. 2023(02): 28-33 .
    4. 叶道辉,陈东方,肖平,张锐尧,张光宇,秦菲. 同频异位式复合冲击器的研究开发与现场试验. 石油机械. 2023(06): 20-26 .
    5. 秦承帅,孙洪斌,李利平,刘学港,刘知辉,冯春,孙子正. 复合冲击作用下PDC钻齿破岩过程连续-非连续数值模拟研究. 煤田地质与勘探. 2023(09): 109-120 .
    6. 赵金成,陈杰,陈立伟,刘禹铭,柴龙顺,蒋畅. 国内外扭力冲击器的研究现状及展望. 机械工程师. 2022(05): 83-85 .
    7. 毛良杰,马茂原,刘立鹏,张伟,陈春宇. 扭力冲击器对钻柱黏滑振动的影响分析. 断块油气田. 2022(04): 545-551 .
    8. 王建云,韩涛,赵宽心,张立军,席宝滨,叶翔. 塔深5井超深层钻井关键技术. 石油钻探技术. 2022(05): 27-33 . 本站查看
    9. 王建龙,柳鹤,于琛,郑锋,李亚锋,刘烁. 多功能振荡旋冲螺杆钻具研制与应用. 西部探矿工程. 2022(12): 49-52+55 .
    10. 赵建军,赵晨熙,崔晓杰,胡群爱. 减震稳扭旋冲钻井提速工具可变节流口特性分析. 机械科学与技术. 2021(04): 592-597 .
    11. 陈小元,严忠. 许X36A下扬子中深探井钻井施工技术. 复杂油气藏. 2021(01): 85-89+101 .
    12. 车继勇,谯正武,李明娜. 井下冲击钻井工具模拟试验装置研制. 石油矿场机械. 2021(03): 80-86 .
    13. 苏崭,王博,盖京明,李玮,赵欢,陈冰邓. 复合式扭力冲击器在坚硬地层中的应用. 中国煤炭地质. 2021(05): 47-50+57 .
    14. 赵建军,崔晓杰,曹海涛,赵晨熙. 高频液力扭转冲击钻井提速工具设计与分析. 机床与液压. 2021(14): 84-88 .
    15. 陈新勇,付潇,李亮亮,王颖瑞,李毅,吴红玲,张明. 廊固凹陷安探地区复杂深井钻井关键技术. 石油机械. 2021(12): 36-41 .
    16. 熊振宇,田壮壮,何阳子,崔强. 复合冲击器在西湖凹陷深部地层钻井中的应用. 海洋石油. 2021(04): 85-89 .
    17. 左宏刚,何福耀,严维锋,和鹏飞,张子明. 超深大位移井井筒清洁技术及工程实践. 石油化工应用. 2020(02): 92-97 .
    18. 陈新勇,韩煦,邱爱民,王秀影,梁晓勇,付凯,黄红亮. 扭力冲击器与螺杆钻具集成BHA应用研究. 石油机械. 2020(05): 34-38 .
    19. 刘伟吉,曾义金,祝效华,丁士东. 单齿复合冲击切削破岩机制及其与扭转冲击的对比. 中国石油大学学报(自然科学版). 2020(03): 74-80 .
    20. 罗恒荣,崔晓杰,谭勇,黎有炎,赵建军. 液力扭转冲击器配合液力加压器的钻井提速技术研究与现场试验. 石油钻探技术. 2020(03): 58-62 . 本站查看
    21. 刘书斌,倪红坚,张恒,李宁. 多维冲击器钻井提速技术及应用. 石油机械. 2020(10): 44-50 .
    22. 韩飞,罗淮东,张全立,张林,王军,李庆. 扭力冲击器设计与仿真分析. 石油机械. 2019(03): 19-23 .
    23. 戴杰,冮鹏. 旋冲钻具技术特点与原理分析. 化工管理. 2019(09): 108-109 .
    24. 胡群爱,孙连忠,张进双,张俊,刘仕银. 硬地层稳压稳扭钻井提速技术. 石油钻探技术. 2019(03): 107-112 . 本站查看
    25. 李相勇. 复合冲击钻井工具在深部难钻地层的应用. 西部探矿工程. 2019(08): 70-72 .
    26. 赵建军,崔晓杰,赵晨熙,胡亮,尹慧博,马兰荣. 高频液力扭力冲击器设计与试验研究. 石油化工应用. 2018(02): 5-10 .
    27. 黄家根,汪海阁,纪国栋,赵飞,明瑞卿,郝亚龙. 超声波高频旋冲钻井技术破岩机理研究. 石油钻探技术. 2018(04): 23-29 . 本站查看
    28. 陈新勇,张苏,付潇,邱晓宁,马谢书,杨恺. 扭力冲击钻井工具模拟分析及现场试验. 石油机械. 2018(09): 29-32 .
    29. 梁奇敏,何俊才,张弘,张翼,刘新云. 钻井提速工具经济性预测评价方法. 石油钻探技术. 2017(03): 57-61 . 本站查看
    30. 闫炎,管志川,玄令超,呼怀刚,庄立. 复合冲击条件下PDC钻头破岩效率试验研究. 石油钻探技术. 2017(06): 24-30 . 本站查看

    Other cited types(18)

Catalog

    Article Metrics

    Article views (94) PDF downloads (31) Cited by(48)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return