LIU Jie, SHEN Delai, YAN Ruifeng, et al. Study on the corrosion resistance of surface-modified soluble magnesium alloy for slip base [J]. Petroleum Drilling Techniques, 2024, 52(3):118-126. DOI: 10.11911/syztjs.2024011
Citation: LIU Jie, SHEN Delai, YAN Ruifeng, et al. Study on the corrosion resistance of surface-modified soluble magnesium alloy for slip base [J]. Petroleum Drilling Techniques, 2024, 52(3):118-126. DOI: 10.11911/syztjs.2024011

Study on the Corrosion Resistance of Surface-Modified Soluble Magnesium Alloy for Slip Base

More Information
  • Received Date: July 18, 2023
  • Revised Date: January 06, 2024
  • Available Online: January 30, 2024
  • The throttling slip base made of soluble magnesium alloy often fails due to its rapid degradation rate during downhole service. Therefore, the surface of soluble magnesium alloy was modified to solve the problem. In order to understand the corrosion resistance of the surface-modified soluble magnesium alloy, the microstructure of surface-modified magnesium alloy before and after corrosion was observed with scanning electron microscopy(SEM). The phase structure of surface-modified magnesium alloy before and after surface corrosion was analyzed by X-ray diffraction (XRD) and infrared spectrometer. The corrosion resistance of the alloy in simulated well fluids at pH 3.0, 7.2, and 9.0 was evaluated by electrochemical and immersion tests. Compared with magnesium alloy, the corrosion potential of surface-modified magnesium alloy was positively shifted by about 1.1 V; the corrosion current density was reduced by three orders of magnitude, and the corrosion rate was reduced by about 3 mm/a in the simulated well fluids at different pH values. Compared with the simulated well fluid at pH 7.2, the charge transfer resistance of the surface-modified magnesium alloy decreased from 9.13×106 Ω·cm2 to 1.91×106 Ω·cm2 in the simulated well fluid at pH 3.0. The results show that compared with magnesium alloy, the corrosion resistance of surface-modified magnesium alloy in simulated well fluids at pH 3.0, 7.2, and 9.0 is significantly improved, while the corrosion resistance of surface-modified magnesium alloy in acidic simulated well fluids is greatly reduced and easy to degrade. The field test of the throttling slip base of the surface-modified magnesium alloy shows that the pressure performance and corrosion resistance of the slip base meet the requirements, and it is easy to be salvaged. The research and field test show that the corrosion resistance of the surface-modified magnesium alloy meets the requirements of soluble slip base, which provides a basis for its application in downhole throttling.

  • [1]
    王发清,曹建洪,曹献平,等. 井下节流技术在塔里木油田的应用评价[J]. 钻采工艺,2017,40(4):106–107.

    WANG Faqing, CAO Jianhong, CAO Xianping, et al. Application evaluation of downhole throttling technology in Tarim Oilfield[J]. Drilling & Production Technology, 2017, 40(4): 106–107.
    [2]
    张天鹤. 吉林油田:井下节流分析治冻堵[J]. 石油知识,2017(6):23.

    ZHANG Tianhe. Jilin Oilfield: downhole throttling analysis for frozen plugging[J]. Petroleum Knowledge, 2017(6): 23.
    [3]
    王越,刘国良,台鸾,等. 带压处理气井节流器工艺技术研究及应用[J]. 内蒙古石油化工,2023,49(2):83–88.

    WANG Yue, LIU Guoliang, TAI Luan, et al. Research and application of the throttling process technology in the pressure treated gas well[J]. Inner Mongolia Petrochemical Industry, 2023, 49(2): 83–88.
    [4]
    张运科,鲍作帆,鹿成亮,等. 利用环形强磁打捞器打捞节流器技术[J]. 油气井测试,2021,30(5):28–31.

    ZHANG Yunke, BAO Zuofan, LU Chengliang, et al. Technology of fishing choke with annular strong magnetic fishing device[J]. Well Testing, 2021, 30(5): 28–31.
    [5]
    胡丹,侯治民,滕汶江,等. 新型活动式井下节流器的研制及应用[J]. 石油钻采工艺,2014,36(3):123–125.

    HU Dan, HOU Zhimin, TENG Wenjiang, et al. Development and application of a new mobile-type downhole choke[J]. Oil Drilling & Production Technology, 2014, 36(3): 123–125.
    [6]
    肖述琴,于志刚,商永滨,等. 新型卡瓦式井下节流器打捞工具研制及应用[J]. 石油矿场机械,2010,39(12):81–83.

    XIAO Shuqin, YU Zhigang, SHANG Yongbin, et al. Development and application of fishing tool for slip-type downhole throttle[J]. Oil Field Equipment, 2010, 39(12): 81–83.
    [7]
    马胜吉. 井下节流器用新型打捞筒的研制与试验[J]. 钻采工艺,2019,42(4):84–86.

    MA Shengji. Development of a new fishing tool for downhole throttle and tests[J]. Drilling & Production Technology, 2019, 42(4): 84–86.
    [8]
    王惠,惠徐宁,金伟,等. 锁芯式井下节流器在苏里格气田的应用[J]. 钻采工艺,2018,41(3):69–71.

    WANG Hui, HUI Xuning, JIN Wei, et al. Applications of lock cylinder type downhole throttle in Sulige Gas Field[J]. Drilling & Production Technology, 2018, 41(3): 69–71.
    [9]
    魏辽,马兰荣,朱敏涛,等. 大通径桥塞压裂用可溶解球研制及性能评价[J]. 石油钻探技术,2016,44(1):90–94.

    WEI Liao, MA Lanrong, ZHU Mintao, et al. Development and performance evaluation of dissolvable balls for large borehole bridge plug fracturing[J]. Petroleum Drilling Techniques, 2016, 44(1): 90–94.
    [10]
    王维,严锐锋,魏克颖,等. 可溶性球座Fe-Mn合金力学及腐蚀性能研究[J]. 石油钻探技术,2022,50(6):133–138.

    WANG Wei, YAN Ruifeng, WEI Keying, et al. Study on mechanical and corrosion properties of Fe-Mn alloy for soluble ball seats[J]. Petroleum Drilling Techniques, 2022, 50(6): 133–138.
    [11]
    郝地龙,何霞,王国荣,等. 可溶桥塞整体式卡瓦结构优化设计[J]. 石油钻探技术,2019,47(1):69–75.

    HAO Dilong, HE Xia, WANG Guorong, et al. Optimization of the structural design of the integral slip of a soluble bridge plug[J]. Petroleum Drilling Techniques, 2019, 47(1): 69–75.
    [12]
    刘辉,王宇,严俊涛,等. 可溶性桥塞性能测试系统研制与应用[J]. 石油机械,2018,46(10):83–86.

    LIU Hui, WANG Yu, YAN Juntao, et al. Development and application of dissoluble bridge plug performance test system[J]. China Petroleum Machinery, 2018, 46(10): 83–86.
    [13]
    王林,张世林,平恩顺,等. 分段压裂用可降解桥塞研制及其性能评价[J]. 科学技术与工程,2017,17(24):228–232.

    WANG Lin, ZHANG Shilin, PING Enshun, et al. Development and performance evaluation of the degradable bridge plug for staged fracturing[J]. Science Technology and Engineering, 2017, 17(24): 228–232.
    [14]
    陆建康,管争荣,雒佛庶. 可溶桥塞镶齿卡瓦基座的分析[J]. 机电工程技术,2022,51(3):122–126.

    LU Jiankang, GUAN Zhengrong, LUO Foshu. The analysis of the soluble bridge plug inserted slip base[J]. Mechanical & Electrical Engineering Technology, 2022, 51(3): 122–126.
    [15]
    邵瑞,张效华. 均匀化退火对AZ80镁合金组织与力学性能的影响[J]. 热加工工艺,2018,47(18):162–165.

    SHAO Rui, ZHANG Xiaohua. Effects of homogenizing annealing on microstructure and mechanical properties of AZ80 magnesium alloy[J]. Hot Working Technology, 2018, 47(18): 162–165.
    [16]
    QU Wentao, PAN Boyang, GONG Hao, et al. Electrochemical corrosion and impedance studies of Ti-30Zr-xNb (x = 7, 10, 13 at. %) alloy in simulated downhole environment[J]. Journal of Solid State Electrochemistry, 2023, 27(5): 1155–1164. doi: 10.1007/s10008-023-05430-z
    [17]
    于晓彤,蔡磊,陈浩,等. 镁合金表面谷氨酸、丙氨酸、天冬氨酸诱导Ca–P涂层耐蚀性能比较[J]. 表面技术,2023,52(4):210–222.

    YU Xiaotong, CAI Lei, CHEN Hao, et al. Comparison of corrosion resistance of glutamic acid, alanine and aspartic acid-induced Ca-P coatings on magnesium alloy[J]. Surface Technology, 2023, 52(4): 210–222.
    [18]
    ZOU Jinchao, WANG Junpeng, HUANG Zhiquan, et al. Effect of multi-pass rolling on the performance of AZ31 magnesium alloy anode in Mg-Air battery[J]. Journal of the Brazilian Chemical Society, 2022, 33(11): 1332–1341.
    [19]
    张源,郑瑞宁,刘芸,等. 轧制形变量对Mg-Zn-Sr-Zr-Mn合金组织特征及降解性能的影响[J]. 稀有金属材料与工程,2022,51(12):4646–4657.

    ZHANG Yuan, ZHENG Ruining, LIU Yun, et al. Effect of rolling shape variation on microstructure characteristics and degradation performance for Mg-Zn-Sr-Zr-Mn alloys[J]. Rare Metal Materials and Engineering, 2022, 51(12): 4646–4657.
    [20]
    涂亚明,石善志,刘从平,等. CO2驱采出井井下附件材料的腐蚀评价与优选[J]. 腐蚀与防护,2018,39(9):658–662.

    TU Yaming, SHI Shanzhi, LIU Congping, et al. Material selection and corrosion evaluation of down-hole accessory for CO2 flooding production wells[J]. Corrosion and Protection, 2018, 39(9): 658–662.
    [21]
    GRGUR B N, JUGOVIĆ B Z, GVOZDENOVIĆ M M. Influence of chloride ion concentration on initial corrosion of AZ63 magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2022, 32(4): 1133–1143. doi: 10.1016/S1003-6326(22)65861-8
    [22]
    GUO Huixia, MA Ying, WANG Jingsong, et al. Corrosion behavior of micro-arc oxidation coating on AZ91D magnesium alloy in NaCl solutions with different concentrations[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7): 1786–1793. doi: 10.1016/S1003-6326(11)61388-5
    [23]
    MENG Yuxian, GAO Hong, HU Jiaqi, et al. Effect of pH value on the corrosion and corrosion fatigue behavior of AM60 magnesium alloy[J]. Journal of Materials Research, 2019, 34(6): 1054–1063. doi: 10.1557/jmr.2018.489
    [24]
    邓希光,王伟强,齐民. AZ31镁合金在Hank’s模拟体液中的腐蚀行为研究[J]. 功能材料,2009,40(11):1884–1887.

    DENG Xiguang, WANG Weiqiang, QI Min. Study on the corrosion behavior of AZ31 magnesium alloy in Hank’s simulated body fluid[J]. Journal of Functional Materials, 2009, 40(11): 1884–1887.
    [25]
    苏容. 苏里格气田水处理系统管线腐蚀因素分析[J]. 化学工程师,2022,36(7):80–83.

    SU Rong. Analysis of pipeline corrosion factors of water treatment system in Sulige Gas Field[J]. Chemical Engineer, 2022, 36(7): 80–83.
  • Related Articles

    [1]ZHANG Yufei, GENG Tie, LIU Xiliang, WANG Xuesong, WANG Chaoqun, ZHOU Zhiqi. Research on Low Corrosion, High Temperature Resistance, High-Density Solid Free Completion Fluid Technology[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025064
    [2]JING Yuxiang, GUO Yintong, FENG Daiying, WAN Yanghui, ZHENG Hebin. Hydration Damage and Shear Characteristics of Regular Toothed Structural Planes of Shale[J]. Petroleum Drilling Techniques, 2025, 53(2): 76-87. DOI: 10.11911/syztjs.2025033
    [3]WANG Wei, YAN Ruifeng, WEI Keying, WU Hongqin, QU Wentao. Study on Mechanical and Corrosion Properties of Fe-Mn Alloy for Soluble Ball Seats[J]. Petroleum Drilling Techniques, 2022, 50(6): 133-138. DOI: 10.11911/syztjs.2022103
    [4]LI Erdang, HAN Zuowei, GAO Xiangrui, MA Mingyu, QIU Junchao. Research on the Microscopic Pore Producing Characteristics of Tight Reservoirs Displaced by Different Gas Injection Media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85-91. DOI: 10.11911/syztjs.2020078
    [5]LI Shan. Casing Optimization for CO2 Corrosion Resistance in the Xushen Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(6): 55-59. DOI: 10.11911/syztjs.201606009
    [6]Zhu Dajiang, Lin Yuanhua, Zou Dapeng, Wang Feng, Zhang Deping, Zhang Ping. Experimental Study on the Impact of Corrosion on the Rubber in Packers in a CO2 Injection Well[J]. Petroleum Drilling Techniques, 2014, 42(5): 126-130. DOI: 10.11911/syztjs.201405023
    [7]Xu Hui, Sun Xiuzhi, Han Yugui, He Dongyue, Dong Wen. Performance Evaluation and Microstructure Study of Ultra High Molecular Weight Polymer[J]. Petroleum Drilling Techniques, 2013, 41(3): 114-118. DOI: 10.3969/j.issn.1001-0890.2013.03.022
    [8]Qu Jia, Yan Siming, Xu Jianhua. Application of Corrosion Resistant Latex Cement Slurry in Yuanba Area[J]. Petroleum Drilling Techniques, 2013, 41(3): 94-98. DOI: 10.3969/j.issn.1001-0890.2013.03.018
    [9]Design and Application of Corrosion Resistant Special Liner Cementing Tool[J]. Petroleum Drilling Techniques, 2011, 39(1): 29-31. DOI: 10.3969/j.issn.1001-0890.2011.01.006
    [10]Development and Its Performance Evaluation of Cement Additive DC206 to Acid Gas Corrosion[J]. Petroleum Drilling Techniques, 2011, 39(1): 25-28. DOI: 10.3969/j.issn.1001-0890.2011.01.005
  • Cited by

    Periodical cited type(1)

    1. 贾志伟,程长坤,朱秀雨,濮兰天,韩宇,扈福堂. 青海油田尕斯N_1–N_2~1超高盐油藏复合驱提高采收率技术. 石油钻探技术. 2021(05): 81-87 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (128) PDF downloads (49) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return