QIN Wenjuan, KANG Zhengming, ZHANG Yi, et al. Influence of structure of modular electromagnetic logging while drilling instrument on measurement signals [J]. Petroleum Drilling Techniques, 2024, 52(3):137-145. DOI: 10.11911/syztjs.2023101
Citation: QIN Wenjuan, KANG Zhengming, ZHANG Yi, et al. Influence of structure of modular electromagnetic logging while drilling instrument on measurement signals [J]. Petroleum Drilling Techniques, 2024, 52(3):137-145. DOI: 10.11911/syztjs.2023101

Influence of Structure of Modular Electromagnetic Logging While Drilling Instrument on Measurement Signals

More Information
  • Received Date: December 08, 2023
  • Revised Date: March 24, 2024
  • Available Online: November 26, 2023
  • Conventional electromagnetic logging while drilling is an important method for evaluating stratigraphic fluids, but it does not have azimuth property. In this paper, a new modular electromagnetic logging while drilling instrument was proposed with good azimuth detection property. In order to accurately understand the influence of modular electromagnetic logging while drilling instrument on the measured voltage signal, a 3D model was established using the finite element method, and the influence laws of various instrument parts were explored. The results show that with the increased resistivity of the drill collar and antenna slot filling material, the received voltage signal has a sudden change, which is closely related to the frequency and geometric size of the instrument. The resistivity of the cover plate material has a great influence on the intensity of the received signal, and the cover plate should be selected with a little lower resistivity than metal. The measurement signal increases with the increasing resistivity of the sensor body, so the non-metallic material should be selected as the sensor body. When the resistivity of the instrument structure such as drill collar and filling material is low, the received voltage signal has obvious attenuation, and its influence can be ignored when the resistivity of the filling material is high. By deducting the instrument response in the air medium, the influence of the instrument structure can be well eliminated. After deducting the influence of the instrument structure, the magnetic flux in the coil decreases, resulting in a smaller instrument signal than before. The research results can provide a theoretical basis for the design and manufacture of actual logging instruments.

  • [1]
    刘亚伟. 随钻电磁波电阻率测井仪结构设计与性能分析[D]. 青岛: 中国石油大学(华东), 2017.

    LIU Yawei. Structure design and performance analysis of electromagnetic wave resistivity logging tool while drilling[D]. Qingdao: China University of Petroleum(East China), 2017.
    [2]
    汪昊, 高杰, 陈航. 各向异性地层随钻电磁波电阻率测井信号处理方法研究[C]//2019年中国地球科学联合学术年会论文集(二十九)——专题77: 井孔地球物理学及深部钻测; 专题78: 地球化学进展; 专题79: 地球深部碳循环; 专题80: 航空地球物理勘查技术与应用. 北京: 中国和平音像电子出版社, 2019: 58−61.

    WANG Hao, GAO Jie, CHEN Hang. Study on signal processing method of electromagnetic wave resistivity logging while drilling in anisotropic formation[C]//Proceedings of the 2019 China Earth Science Joint Academic Annual Conference (29)—Special Topic 77: Well geophysics and deep drilling; Special Topic 78: Progress in geochemistry; Special Topic 79: Deep earth carbon cycle; Special Topic 80: Aerial geophysical exploration technology and applications. Beijing: China Heping Audio Video Electronic Publishing House, 2019: 58−61.
    [3]
    唐海全,肖红兵,李翠,等. 基于随钻测井的地层界面识别方法[J]. 天然气勘探与开发,2016,39(4):8–12.

    TANG Haiquan, XIAO Hongbing, LI Cui, et al. Methods to identify formation boundary based on logging-while-drilling[J]. Natural Gas Exploration and Development, 2016, 39(4): 8–12.
    [4]
    林发武,田超国,耿学杰,等. 随钻电磁波测井响应函数理论及探测特性[J]. 中国石油大学学报(自然科学版),2021,45(1):60–68. doi: 10.3969/j.issn.1673-5005.2021.01.007

    LIN Fawu, TIAN Chaoguo, GENG Xuejie, et al. Theory of response function and analysis of detecting characteristic of electromagnetic logging while drilling[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(1): 60–68. doi: 10.3969/j.issn.1673-5005.2021.01.007
    [5]
    仵杰,任垚煜,贺秋利,等. 电磁远探测仪器参数设计[J]. 西安石油大学学报(自然科学版),2021,36(1):105–112. doi: 10.3969/j.issn.1673-064X.2021.01.015

    WU Jie, REN Yaoyu, HE Qiuli, et al. Parameter design of remote detection tool with electromagnetic method[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2021, 36(1): 105–112. doi: 10.3969/j.issn.1673-064X.2021.01.015
    [6]
    岳喜洲,刘天淋,李国玉,等. 随钻方位电磁波测井响应快速正演方法与地质导向应用[J]. 地球物理学报,2022,65(5):1909–1920. doi: 10.6038/cjg2022P0233

    YUE Xizhou, LIU Tianlin, LI Guoyu, et al. An analytically fast forward method of LWD azimuthal electromagnetic measurement and its geo-steering application[J]. Chinese Journal of Geophysics, 2022, 65(5): 1909–1920. doi: 10.6038/cjg2022P0233
    [7]
    张晓彬. 随钻方位电磁波电阻率测井仪线圈系设计方法研究[D]. 青岛: 中国石油大学(华东), 2017.

    ZHANG Xiaobin. Research on the design of coil system for azimuthal propagation resistivity LWD instrument[D]. Qingdao: China University of Petroleum(East China), 2017.
    [8]
    仵杰,姬玉,成志刚,等. 泥浆侵入对随钻电磁波电阻率测井响应的影响[J]. 西安石油大学学报(自然科学版),2020,35(1):49–54. doi: 10.3969/j.issn.1673-064X.2020.01.007

    WU Jie, JI Yu, CHENG Zhigang, et al. Influence of mud invasion on response of electromagnetic wave resistivity logging while drilling[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2020, 35(1): 49–54. doi: 10.3969/j.issn.1673-064X.2020.01.007
    [9]
    仵杰,叶雨,白茹宝,等. 随钻双感应测井仪背景影响研究[J]. 石油管材与仪器,2015,1(3):46–50. doi: 10.3969/j.issn.1004-9134.2015.03.013

    WU Jie, YE Yu, BAI Rubao, et al. The background influence research of LWD dual-induction logging instrument[J]. Petroleum Tubular Goods & Instruments, 2015, 1(3): 46–50. doi: 10.3969/j.issn.1004-9134.2015.03.013
    [10]
    杨震,肖红兵,李翠. 随钻方位电磁波仪器测量精度对电阻率及界面预测影响分析[J]. 石油钻探技术,2017,45(4):115–120.

    YANG Zhen, XIAO Hongbing, LI Cui. Impacts of accuracy of azimuthal electromagnetic logging-while-drilling on resistivity and interface prediction[J]. Petroleum Drilling Techniques, 2017, 45(4): 115–120.
    [11]
    吴世伟,刘得军,赵阳,等. 层状介质水力裂缝电磁响应的有限元正演模拟[J]. 石油钻探技术,2022,50(2):132–138. doi: 10.11911/syztjs.2022060

    WU Shiwei, LIU Dejun, ZHAO Yang, et al. Finite-element forward modeling of electromagnetic response of hydraulic fractures in layered medium[J]. Petroleum Drilling Techniques, 2022, 50(2): 132–138. doi: 10.11911/syztjs.2022060
    [12]
    WANG T, TCHAKAROV B J. Modular resistivity sensor for downhole measurement while drilling: US 9638819 B2[P]. 2017−05−02.
    [13]
    康正明,秦浩杰,张意,等. 基于LSTM神经网络的随钻方位电磁波测井数据反演[J]. 石油钻探技术,2023,51(2):116–124. doi: 10.11911/syztjs.2023047

    KANG Zhengming, QIN Haojie, ZHANG Yi, et al. Data inversion of azimuthal electromagnetic wave logging while drilling based on LSTM neural network[J]. Petroleum Drilling Techniques, 2023, 51(2): 116–124. doi: 10.11911/syztjs.2023047
    [14]
    MA Zhonghua, LIU Dejun, LI Hui, et al. Numerical simulation of a multi-frequency resistivity logging-while-drilling tool using a highly accurate and adaptive higher-order finite element method[J]. Advances in Applied Mathematics and Mechanics, 2012, 4(4): 439–453. doi: 10.4208/aamm.10-m11158
    [15]
    魏宝君,徐丹,王莎莎. 通讯槽对电磁波传播随钻测量信号的影响[J]. 中国石油大学学报(自然科学版),2011,35(1):56–60. doi: 10.3969/j.issn.1673-5005.2011.01.010

    WEI Baojun, XU Dan, WANG Shasha. Influence of communication slots on signal of electromagnetic propagation measurement while drilling[J]. Journal of China University of Petroleum(Edition of Natural Science), 2011, 35(1): 56–60. doi: 10.3969/j.issn.1673-5005.2011.01.010
    [16]
    刘得军,马中华,苑赫,等. 自适应高阶矢量有限元方法在随钻电阻率测井中的应用[J]. 中国石油大学学报(自然科学版),2012,36(4):77–83. doi: 10.3969/j.issn.1673-5005.2012.04.014

    LIU Dejun, MA Zhonghua, YUAN He, et al. Application of adaptive higher-order vector finite element method to simulate resistivity logging-while-drilling tool response[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(4): 77–83. doi: 10.3969/j.issn.1673-5005.2012.04.014
    [17]
    宋殿光,段宝良,魏宝君,等. 金属钻铤对随钻电磁波电阻率测井仪测量信号的影响[J]. 测井技术,2014,38(2):201–205.

    SONG Dianguang, DUAN Baoliang, WEI Baojun, et al. The influence of metal mandrel on electromagnetic resistivity logging responses[J]. Well Logging Technology, 2014, 38(2): 201–205.
    [18]
    许巍,柯式镇,李安宗,等. 随钻电磁波测井仪器结构影响的三维有限元模拟[J]. 中国石油大学学报(自然科学版),2016,40(6):50–56. doi: 10.3969/j.issn.1673-5005.2016.06.006

    XU Wei, KE Shizhen, LI Anzong, et al. Structural effects analysis of an electromagnetic wave propagation resistivity LWD tool by 3D finite element method[J]. Journal of China University of Petroleum (Edition of Natural Science), 2016, 40(6): 50–56. doi: 10.3969/j.issn.1673-5005.2016.06.006
  • Related Articles

    [1]LI Zhongcheng, BAO Zhidong, WANG Hongxue, ZHANG Dong. Quantitative Analysis Method of Remaining Oil Based on Fluorescence Microscopic Observation of High-Pressure Mercury Lamp[J]. Petroleum Drilling Techniques, 2024, 52(3): 112-117. DOI: 10.11911/syztjs.2023114
    [2]SHU Huilong, TIAN Zhonglan, FU Li, YANG Henglin, YANG Lei, FAN Yuguang. A Quantitative Monitoring and Evaluation Technology for Hole Cleaning of Horizontal Well[J]. Petroleum Drilling Techniques, 2023, 51(2): 68-73. DOI: 10.11911/syztjs.2022083
    [3]ZHANG Jing, ZHENG Bin, LI Hongying, LIU Yujuan, YAN Zhiming. Quantitative Study of Vertical Sweep Degree Between Injection andProduction Wells in Thick Oil Layers[J]. Petroleum Drilling Techniques, 2022, 50(2): 118-125. DOI: 10.11911/syztjs.2021124
    [4]YANG Chuanshu. Development and Application of Risk-Assessment System for Drilling Operations[J]. Petroleum Drilling Techniques, 2017, 45(5): 60-67. DOI: 10.11911/syztjs.201705011
    [5]Liu Zhengli, Ye Jihua, Tian Ruirui, Yan De. Adaptability of Underwater Tamping for Deepwater Drilling Conductor Installation in South China Sea[J]. Petroleum Drilling Techniques, 2014, 42(1): 41-45. DOI: 10.3969/j.issn.1001-0890.2014.01.008
    [6]Ju Pei, Zhai Yinghu. Selection of PDC Bit by Using Improved Fuzzy Comprehensive Evaluation Method[J]. Petroleum Drilling Techniques, 2013, 41(1): 108-112. DOI: 10.3969/j.issn.1001-0890.2013.01.021
    [7]Song Gangxiang, Yu Gaoming, Han Xin, Jian Jie, Lu Yan. New Methods of Quantitatively Evaluate Effect of Profile Control[J]. Petroleum Drilling Techniques, 2012, 40(6): 96-98. DOI: 10.3969/j.issn.1001-0890.2012.06.020
    [8]Zheng Qiang, Liu Huiqing, Li Fang, Zhang Jie, Zhang Bo. Quantitative Identification of Breakthrough Channel in Water Flooding Reservoirs at Later Stage[J]. Petroleum Drilling Techniques, 2012, 40(4): 92-95. DOI: 10.3969/j.issn.1001-0890.2012.04.018
    [9]Wu Han, Wu Xiaodong, Zhang Qingsheng, Fang Yue, Zhao Yuxin. Reasonable Diameter Selection of Production String for Puguang Gas Well with High H2S[J]. Petroleum Drilling Techniques, 2012, 40(1): 98-102. DOI: 10.3969/j.issn.1001-0890.2012.01.020
    [10]Jiang Guancheng, Wang Xiaojun, Guan Jian, Li Jiancheng, Yang Peng, Guo Linhao. The Quantitative Prediction Method of Water Blocking Damage in Low and Extra-Low Permeability Reservoir[J]. Petroleum Drilling Techniques, 2012, 40(1): 69-73. DOI: 10.3969/j.issn.1001-0890.2012.01.014
  • Cited by

    Periodical cited type(3)

    1. 杨宇翔, 杨进, 刘一斌. 海洋探井隔水导管分段控制方程及力学特性研究. 石油钻探技术. 2025(03) 本站查看
    2. 杨进,傅超,刘书杰,李中,张伟国,刘正礼. 中国深水钻井关键技术与装备现状及展望. 世界石油工业. 2024(04): 69-80 .
    3. 孙福街. 中国海油勘探开发数据治理探索与实践. 中国海上油气. 2024(06): 169-176 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (151) PDF downloads (73) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return