MU Lijun, BAI Jie, QI Yin, et al. Geological engineering integrated fracturing technology for Qingcheng interlayer shale oil [J]. Petroleum Drilling Techniques,2023, 51(5):33-41. DOI: 10.11911/syztjs.2023079
Citation: MU Lijun, BAI Jie, QI Yin, et al. Geological engineering integrated fracturing technology for Qingcheng interlayer shale oil [J]. Petroleum Drilling Techniques,2023, 51(5):33-41. DOI: 10.11911/syztjs.2023079

Geological Engineering Integrated Fracturing Technology for Qingcheng Interlayer Shale Oil

More Information
  • Received Date: May 15, 2023
  • Revised Date: August 21, 2023
  • Available Online: September 02, 2023
  • Qingcheng interlayer shale oil possesses the characteristics of tight reservoirs, a low pressure coefficient in the original reservoirs, and significant heterogeneity in lacustrine sediment. According to the methods of large-scale physical model experiment, coring observation of horizontal inspection wells, and microseismic frequency and magnitude analysis, the fracture morphology of the fracture system was mainly artificial main fracture, followed by branch/microfractures. The idea of subdividing and cutting fractures was applied, and the segmented multi-cluster perforation joint cropping process using bridge plug/ball block was taken as the main technology. Starting from the comprehensive sweet spot characteristics of geological engineering, the fracture layout strategy, segment and cluster combinations, and cluster spacing were optimized. Based on the principle of limited entry fracturing, the multi-cluster fracture propagation was controlled by temporary plugging, and the key parameters of fracturing were optimized with a large number of on-site fracturing data as the sample set. According to the demands for fracture network flow conductivity, the particle size combination of fracturing fluid and proppant was optimized, and the development of a geological engineering integrated fracturing technology specific to Qingcheng interlayer shale oil was formed. The 180 horizontal wells in Qingcheng shale oil block were fractured in 4 590 stages using the geological engineering integrated fracturing technology. After fracturing, the initial production of a single well reached 14.5 t/d, and the production decline rate in the first year was reduced by more than 10 percentage points. The research and field applications have demonstrated that the the geological engineering integrated fracturing technology for shale oil can effectively match oil reservoirs and fractures, thereby providing vital support for achieving a million-ton production capacity in Qingcheng shale oil. This technology also contributes to the efficient utilization and beneficial development of continental shale oil resources.

  • [1]
    邹才能,丁云宏,卢拥军,等. “人工油气藏” 理论、技术及实践[J]. 石油勘探与开发,2017,44(1):144–154.

    ZOU Caineng, DING Yunhong, LU Yongjun, et al. Concept, technology and practice of “man-made reservoirs” development[J]. Petroleum Exploration and Development, 2017, 44(1): 144–154.
    [2]
    蒋廷学. 非常规油气藏新一代体积压裂技术的几个关键问题探讨[J]. 石油钻探技术,2023,51(4):184–191.

    JIANG Tingxue. Discussion on several key issues of the new-generation network fracturing technologies for unconventional reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(4): 184–191.
    [3]
    张永平,齐士龙,唐鹏飞,等. 松北致密气藏压裂裂缝扩展形态及压裂参数优化[J]. 石油钻采工艺,2022,44(5):623–631.

    ZHANG Yongping, QI Shilong, TANG Pengfei, et al. Optimization of fracture morphology and parameters in Songbei tight gas reservoir[J]. Oil Drilling & Production Technology, 2022, 44(5): 623–631.
    [4]
    张矿生,唐梅荣,陶亮,等. 庆城油田页岩油水平井压增渗一体化体积压裂技术[J]. 石油钻探技术,2022,50(2):9–15.

    ZHANG Kuangsheng, TANG Meirong, TAO Liang, et al. Horizontal well volumetric fracturing technology integrating fracturing, energy enhancement, and imbibition for shale oil in Qingcheng Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 9–15.
    [5]
    冯发勇,梁志彬,姚昌宇. 东胜气田锦30 井区变黏压裂液体积压裂技术[J]. 石油钻采工艺,2022,44(6):740–745.

    FENG Fayong, LIANG Zhibin, YAO Changyu. SRV-oriented fracturing with viscosity-variable fracturing fluids in the Jin-30 well district, Dongsheng gas field[J]. Oil Drilling & Production Technology, 2022, 44(6): 740–745.
    [6]
    焦方正. 页岩气“体积开发”理论认识、核心技术与实践[J]. 天然气工业,2019,39(5):1–14.

    JIAO Fangzheng. Theoretical insights, core technologies and practices concerning “volume development” of shale gas in China[J]. Natural Gas Industry, 2019, 39(5): 1–14.
    [7]
    吴奇,胥云,王晓泉,等. 非常规油气藏体积改造技术:内涵、优化设计与实现[J]. 石油勘探与开发,2012,39(3):352–358.

    WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: Connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352–358.
    [8]
    付金华,牛小兵,淡卫东,等. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展[J]. 中国石油勘探,2019,24(5):601–614.

    FU Jinhua, NIU Xiaobing, DAN Weidong, et al. The geological characteristics and the progress on exploration and development of shale oil in Chang 7 Member of Mesozoic Yanchang Formation, Ordos Basin[J]. China Petroleum Exploration, 2019, 24(5): 601–614.
    [9]
    李忠兴,屈雪峰,刘万涛,等. 鄂尔多斯盆地长7段致密油合理开发方式探讨[J]. 石油勘探与开发,2015,42(2):217–221.

    LI Zhongxing, QU Xuefeng, LIU Wantao, et al. Development modes of Triassic Yanchang Formation Chang 7 Member tight oil in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 217–221.
    [10]
    李松泉,吴志宇,王娟,等. 长庆油田地质工程一体化智能决策系统开发与应用[J]. 中国石油勘探,2022,27(1):12–25.

    LI Songquan, WU Zhiyu, WANG Juan, et al. Development and application of geology and engineering integrated intelligent decision-making system of Changqing Oilfield[J]. China Petroleum Exploration, 2022, 27(1): 12–25.
    [11]
    李树同,李士祥,刘江艳,等. 鄂尔多斯盆地长7段纯泥页岩型页岩油研究中的若干问题与思考[J]. 天然气地球科学,2021,32(12):1785–1796.

    LI Shutong, LI Shixiang, LIU Jiangyan, et al. Some problems and thoughts on the study of pure shale-type shale oil in the 7th Member of Yanchang Formation in Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1785–1796.
    [12]
    焦方正. 陆相低压页岩油体积开发理论技术及实践:以鄂尔多斯盆地长7段页岩油为例[J]. 天然气地球科学,2021,32(6):836–844.

    JIAO Fangzheng. Theoretical technologies and practices concerning “volume development” of low pressure continental shale oil: case study of shale oil in Chang 7 Member, Ordos Basin, China[J]. Natural Gas Geoscience, 2021, 32(6): 836–844.
    [13]
    赵金洲,任岚,沈骋,等. 页岩气储层缝网压裂理论与技术研究新进展[J]. 天然气工业,2018,38(3):1–14.

    ZHAO Jinzhou, REN Lan, SHEN Cheng, et al. Latest research progresses in network fracturing theories and technologies for shale gas reservoirs[J]. Natural Gas Industry, 2018, 38(3): 1–14.
    [14]
    王文东,赵广渊,苏玉亮,等. 致密油藏体积压裂技术应用[J]. 新疆石油地质,2013,34(3):345–348.

    WANG Wendong, ZHAO Guangyuan, SU Yuliang, et al. Application of network fracturing technology to tight oil reservoirs[J]. Xinjiang Petroleum Geology, 2013, 34(3): 345–348.
    [15]
    慕立俊,赵振峰,李宪文,等. 鄂尔多斯盆地页岩油水平井细切割体积压裂技术[J]. 石油与天然气地质,2019,40(3):626–635. doi: 10.11743/ogg20190317

    MU Lijun, ZHAO Zhenfeng, LI Xianwen, et al. Fracturing technology of stimulated reservoir volume with subdivision cutting for shale oil horizontal wells in Ordos Basin[J]. Oil & Gas Geology, 2019, 40(3): 626–635. doi: 10.11743/ogg20190317
    [16]
    石道涵,张矿生,唐梅荣,等. 长庆油田页岩油水平井体积压裂技术发展与应用[J]. 石油科技论坛,2022,41(3):10–17. doi: 10.3969/j.issn.1002-302x.2022.03.002

    SHI Daohan, ZHANG Kuangsheng, TANG Meirong, et al. Development and application of shale oil horizontal well volume fracturing technology in Changqing Oilfield[J]. Petroleum Science and Technology Forum, 2022, 41(3): 10–17. doi: 10.3969/j.issn.1002-302x.2022.03.002
    [17]
    赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91.

    ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91.
    [18]
    张矿生,樊凤玲,雷鑫. 致密砂岩与页岩压裂缝网形成能力对比评价[J]. 科学技术与工程,2014,14(14):185–189.

    ZHANG Kuangsheng, FAN Fengling, LEI Xin. Comparing evaluation of the ability of forming fracture network in tight sand reservoir and shale reservoir[J]. Science Technology and Engineering, 2014, 14(14): 185–189.
    [19]
    张矿生,王文雄,徐晨,等. 体积压裂水平井增产潜力及产能影响因素分析[J]. 科学技术与工程,2013,21(35):10475–10480.

    ZHANG Kuangsheng, WANG Wenxiong, XU Chen, et al. Analysis on stimulation potential and productivity influencing factors of network fractured horizontal well[J]. Science Technology and Engineering, 2013, 21(35): 10475–10480.
    [20]
    李宪文,樊凤玲,杨华,等. 鄂尔多斯盆地低压致密油藏不同开发方式下的水平井体积压裂实践[J]. 钻采工艺,2016,39(3):34–36.

    LI Xianwen, FAN Fengling, YANG Hua, et al. Volumetric fracturing technology of low-pressure tight oil reservoirs horizontal wells under different development conditions in Ordos Basin[J]. Drilling & Production Technology, 2016, 39(3): 34–36.
    [21]
    陈超峰,王波,王佳,等. 吉木萨尔页岩油下甜点二类区水平井压裂技术[J]. 石油钻探技术,2021,49(4):112–117.

    CHEN Chaofeng, WANG Bo, WANG Jia, et al. Fracturing technologies of horizontal well in the second-class shale oil reservoirs of the lower sweet spot areas in Jimusaer[J]. Petroleum Drilling Techniques, 2021, 49(4): 112–117.
    [22]
    WEDDLE P, GRIFFIN L, PEARSON C M. Mining the Bakken II: pushing the envelope with extreme limited entry perforating[R]. SPE 189880, 2018.
    [23]
    翁定为,雷群,胥云,等. 缝网压裂技术及其现场应用[J]. 石油学报,2011,32(2):280–284.

    WENG Dingwei, LEI Qun, XU Yun, et al. Network fracturing techniques and its application in the field[J]. Acta Petrolei Sinica, 2011, 32(2): 280–284.
    [24]
    卞晓冰,蒋廷学,贾长贵,等. 考虑页岩裂缝长期导流能力的压裂水平井产量预测[J]. 石油钻探技术,2014,42(5):37–41.

    BIAN Xiaobing, JIANG Tingxue, JIA Changgui, et al. Production prediction of fractured horizontal well in shale gas reservoirs considering long-term flow conductivity[J]. Petroleum Drilling Techniques, 2014, 42(5): 37–41.
    [25]
    薛婷,黄天镜,成良丙,等. 鄂尔多斯盆地庆城油田页岩油水平井产能主控因素及开发对策优化[J]. 天然气地球科学,2021,32(12):1880–1888.

    XUE Ting, HUANG Tianjing, CHENG Liangbing, et al. Dominating factors on shale oil horizontal well productivity and development strategies optimization in Qingcheng Oilfield, Ordos Basin[J]. Natural Gas Geoscience, 2021, 32(12): 1880–1888.
    [26]
    范家伟,袁野,李绍华,等. 塔里木盆地深层致密油藏地质工程一体化模拟技术[J]. 断块油气田,2022,29(2):194–198.

    FAN Jiawei,YUAN Ye,LI Shaohua,et al. Geology-engineering integrated simulation technology of deep tight oil reservoir in Tarim Basin[J]. Fault-Block Oil & Gas Field, 2022, 29(2): 194–198.
    [27]
    蒋海,肖阳,王栋,等. 页岩气体积改造人工缝网优化设计[J]. 特种油气藏,2022,29(5):154–160.

    JIANG Hai, XIAO Yang, WANG Dong, et al. Optimal design of artificial fracture network for shale gas volume stimulation[J]. Special Oil & Gas Reservoirs, 2022, 29(5): 154–160.
  • Cited by

    Periodical cited type(7)

    1. 彭博一,李晓东,王康,刘维平,冯美贵,蒋睿,金博. 废弃无固相钻井液无害化处理技术研究与应用. 钻探工程. 2025(02): 45-50 .
    2. 刘均一,李公让,黄利民,马晓勇,夏晔. 胜利油田钻井液环保处理技术研究与应用. 石油钻探技术. 2024(03): 47-52 . 本站查看
    3. 彭博一,刘维平,高金华,于富安,李晓东. 废弃钻井液无害化处理技术研究进展. 地质装备. 2024(S1): 39-44 .
    4. 徐梦冉,步玉环,赵恒仪,刘芳,庞学玉,张振,向刚. 氯氧镁水泥在石油领域的研究进展及应用前景. 特种油气藏. 2024(06): 10-23 .
    5. 赵小光,孙俊刚,曹玉霞,李发旺. H油田废弃泥浆无害化处理技术研究与应用. 辽宁化工. 2023(04): 544-546+550 .
    6. 丁新燕,李姝仪,闫君芝,邢艳,王伟. 粉煤灰固化体系对油田废钻井液的固化处理效果. 化工科技. 2023(05): 14-18 .
    7. 王潇辉,王旭东,姜春丽,师浩林,薛迦文,徐加放. 高密度废弃水基钻井液电破胶条件的响应曲面法. 钻井液与完井液. 2023(05): 622-628 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (343) PDF downloads (142) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return