Citation: | ZHANG Haolin, YANG Chuanshu, LI Changsheng, et al. Design and research practice of a drilling digital twin system [J]. Petroleum Drilling Techniques,2023, 51(3):58-65. DOI: 10.11911/syztjs.2023011 |
As an ideal paradigm of intelligent drilling, digital twin technology shows great potential. However, due to the complex industrial system characteristics of drilling engineering, the research and development (R & D) of digital twin technology has been difficult and is still in its infancy. Therefore, on the basis of analyzing the development status of digital twin technology in the petroleum industry, six supporting technologies involved in drilling digital twin were clarified. Adhering to the business needs of drilling engineering, the overall architecture of a drilling digital twin system was designed, and the function and model designs were described in detail. Through three R & D tests of wellsite data standard collection, mechanism calculation model coupling and three-dimensional (3D) dynamic fusion display, the feasibility of implementing the drilling digital twin technology was verified from a technical point of view. The research takes the position that the construction of the drilling digital twin system should take drilling engineering data as the foundational bases of data. The “mechanism + data” dual computing core should be built based on the business needs, and the twin model and business application module should be developed as carriers, so as to realize the application of the drilling digital twin system. The research results are of great significance for promoting the application of digital twin technology in drilling engineering.
[1] |
GRIEVES M W. Product lifecycle management: The new paradigm for enterprises[J]. International Journal of Product Development, 2005, 2(1/2): 71–84. doi: 10.1504/IJPD.2005.006669
|
[2] |
TUEGEL E J, INGRAFFEA A R, EASON T G, et al. Reengineering aircraft structural life prediction using a digital twin[J]. International Journal of Aerospace Engineering, 2011, 2011: 154798.
|
[3] |
GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and U. S. air force vehicles[C]// the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: American Institute of Aeronautics and Astronautics, 2012: AIAA 2012−1818.
|
[4] |
陶飞,刘蔚然,张萌,等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统,2019,25(1):1–18.
TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1–18.
|
[5] |
WANG X V, WANG Lihui. Digital twin-based WEEE recycling, recovery and remanufacturing in the background of industry 4.0[J]. International Journal of Production Research, 2019, 57(12): 3892–3902. doi: 10.1080/00207543.2018.1497819
|
[6] |
杨林瑶,陈思远,王晓,等. 数字孪生与平行系统:发展现状、对比及展望[J]. 自动化学报,2019,45(11):2001–2031.
YANG Linyao, CHEN Siyuan, WANG Xiao, et al. Digital twins and parallel systems: State of the art, comparisons and prospect[J]. Acta Automatica Sinica, 2019, 45(11): 2001–2031.
|
[7] |
SCHLEICH B, ANWER N, MATHIEU L, et al. Shaping the digital twin for design and production engineering[J]. CIRP Annals, 2017, 66(1): 141–144. doi: 10.1016/j.cirp.2017.04.040
|
[8] |
MILLER A M, ALVAREZ R, HARTMAN N. Towards an extended model-based definition for the digital twin[J]. Computer-Aided Design and Applications, 2018, 15(6): 880–891. doi: 10.1080/16864360.2018.1462569
|
[9] |
刘志峰,陈伟,杨聪彬,等. 基于数字孪生的零件智能制造车间调度云平台[J]. 计算机集成制造系统,2019,25(6):1444–1453.
LIU Zhifeng, CHEN Wei, YANG Congbin, et al. Intelligent manufacturing workshop dispatching cloud platform based on digital twins[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1444–1453.
|
[10] |
李欣,刘秀,万欣欣. 数字孪生应用及安全发展综述[J]. 系统仿真学报,2019,31(3):385–392.
LI Xin, LIU Xiu, WAN Xinxin. Overview of digital twins application and safe development[J]. Journal of System Simulation, 2019, 31(3): 385–392.
|
[11] |
刘大同,郭凯,王本宽,等. 数字孪生技术综述与展望[J]. 仪器仪表学报,2018,39(11):1–10.
LIU Datong, GUO Kai, WANG Benkuan, et al. Summary and perspective survey on digital twin technology[J]. Chinese Journal of Scientific Instrument, 2018, 39(11): 1–10.
|
[12] |
CHOWDHURY K, LAMACCHIA D, FRENK FELDMAN V, et al. A cloud–based smart engineering and predictive computation system for pipeline design and operation cost reduction[R]. SPE 203171, 2020.
|
[13] |
HOLBERG G I, GRENNBERG V, MARTENS J. Using digital twins for condition monitoring of subsea mechanical equipment[R]. SPE 202405, 2020.
|
[14] |
KNEZEVIC D J, KANG H, SHARMA P, et al. Structural integrity management of offshore structures via RB-FEA and fast full load mapping based digital twins[R]. ISOPE-I-18−185, 2018.
|
[15] |
CARPENTER C. Digital-twin approach predicts fatigue damage of marine risers[J]. Journal of Petroleum Technology, 2021, 73(10): 65–66. doi: 10.2118/1021-0065-JPT
|
[16] |
BHAT S, NADATHUR V, KNEZEVIC D, et al. Structural digital twin of FPSO for monitoring the hull and topsides based on inspection data and load measurement[R]. OTC 31328, 2021.
|
[17] |
杨传书. 数字孪生技术在钻井领域的应用探索[J]. 石油钻探技术,2022,50(3):10–16.
YANG Chuanshu. Exploration for the application of digital twin technology in drilling engineering[J]. Petroleum Drilling Techni-ques, 2022, 50(3): 10–16.
|
[18] |
李金蔓,周守为,孙金声,等. 数字技术赋能海上油田开发:渤海智能油田建设探索[J]. 石油钻采工艺,2022,44(3):376–382.
LI Jinman, ZHOU Shouwei, SUN Jinsheng, et al. Digital technology energizes offshore oilfield development: An attempt to build the Bohai smart oilfield[J]. Oil Drilling & Production Technology, 2022, 44(3): 376–382.
|
[19] |
BIMASTIANTO P, KHAMBETE S, ALSAADI H, et al. Digital twin implementation on current development drilling, benefits and way forward[R]. SPE 202795, 2020.
|
[20] |
IMOMOH V B, TOYOBO O, OKAFOR R. Creating a digital twin of part of the earth subsurface through reservoir navigation ser-vice[R]. SPE 203621, 2020.
|
[21] |
PRICE J, JONES C, DAI Bin, et al. Characterizing downhole fluid analysis sensors as digital twins: Lessons of the machine learning approach, the physics approach and the integrated hybrid app-roach[R]. SPE 206291, 2021.
|
[22] |
AVANZINI G B, ERIKSSON K E. Quality assurance framework of digital twins for the oil and gas industry[R]. OMC 2021−157, 2021.
|
[23] |
GHARIB SHIRANGI M, FURLONG E, SIMS K S. Digital twins for well planning and bit dull grade prediction[R]. SPE 200740, 2020.
|
[24] |
CHMELA B, ABRAHMSEN E, HAUGEN J. Prevention of drilling problems using real-time symptom detection and physical mode-ls[R]. OTC 25460, 2014.
|
[25] |
MAYANI M G, SVENDSEN M, OEDEGAARD S I. Drilling digital twin success stories the last 10 years[R]. SPE 191336, 2018.
|
[26] |
NADHAN D, MAYANI M G, ROMMETVEIT R. Drilling with digital twins[R]. SPE 191388, 2018.
|
[27] |
耿黎东. 大数据技术在石油工程中的应用现状与发展建议[J]. 石油钻探技术,2021,49(2):72–78.
GENG Lidong. Application status and development suggestions of big data technology in petroleum engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72–78.
|
[28] |
杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13.
YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13.
|
[29] |
柳海啸,刘芳,代文星,等. 基于大数据分析技术的钻井提效实践[J]. 石油钻采工艺,2021,43(4):436–441.
LIU Haixiao, LIU Fang, DAI Wenxing, et al. Drilling efficiency improvement practice based on big data analysis technology[J]. Oil Drilling & Production Technology, 2021, 43(4): 436–441.
|
[30] |
黄小龙,刘东涛,宋吉明,等. 基于大数据及人工智能的钻速实时优化技术[J]. 石油钻采工艺,2021,43(4):442–448.
HUANG Xiaolong, LIU Dongtao, SONG Jiming, et al. Real-time ROP optimization technology based on big data and artificial intelligence[J]. Oil Drilling & Production Technology, 2021, 43(4): 442–448.
|
[31] |
石祥超,王宇鸣,刘越豪,等. 关于人工智能方法用于钻井机械钻速预测的探讨[J]. 石油钻采工艺,2022,44(1):105–111. doi: 10.13639/j.odpt.2022.01.016
SHI Xiangchao, WANG Yuming, LIU Yuehao, et al. Discussion on the application of artificial intelligence method to the prediction of drilling machinery ROP[J]. Oil Drilling & Production Technology, 2022, 44(1): 105–111. doi: 10.13639/j.odpt.2022.01.016
|
[1] | GUO Zhaohui, LI Zhen, LUO Hengrong. Research and Application of a ϕ273.1 mm Infinite Circulation Liner Hanger in Yuanba Gas Field[J]. Petroleum Drilling Techniques, 2021, 49(5): 64-69. DOI: 10.11911/syztjs.2021004 |
[2] | WANG Xuelong, HE Xuanpeng, LIU Xianfeng, CHENG Tianhui, LI Ruiliang, FU Qiang. Key Drilling Technologies for Complex Ultra-Deep Wells in the Tarim Keshen 9 Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(1): 15-20. DOI: 10.11911/syztjs.2020028 |
[3] | LIN Yongxue, WANG Weiji, JIN Junbin. Key Drilling Fluid Technology in the Ultra Deep Section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113-120. DOI: 10.11911/syztjs.2019068 |
[4] | LUO Wei, LIN Yongmao, DONG Haifeng, WU Qiang. Wellbore Blockage Removing Technologies in the Yuanba Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(5): 109-114. DOI: 10.11911/syztjs.2018116 |
[5] | Qiao Lingliang, Hu Daliang, Xiao Guoyi. ROP Improvement Technology for High-Pressure Terrestrial Tight Abrasive Formations in the Yuanba Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(5): 44-48. DOI: 10.11911/syztjs.201505008 |
[6] | Guan Shuwei. Development and Testing of a New Type of Diamond-Impregnated Bits[J]. Petroleum Drilling Techniques, 2015, 43(4): 129-132. DOI: 10.11911/syztjs.201504023 |
[7] | Li Shuang, Dong Bo, Kong Fangqing, Xie Yongbin. New Technology for Stuck Drill Pipe Using Mud Loss-Proof Emulsified Acid Implemented in a Ultra-Deep Horizontal Well in the Yuanba Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(2): 44-49. DOI: 10.11911/syztjs.201502008 |
[8] | Pu Hongjiang, Zhang Linhai, Hou Yuequan, Zhou Xiaofei, Liu Jian. Large Size Nonstandard Liner Cementing Technique in Yuanba Gas Field[J]. Petroleum Drilling Techniques, 2014, 42(4): 64-68. DOI: 10.3969/j.issn.1001-0890.2014.04.012 |
[9] | Ge Pengfei, Ma Qingtao, Zhang Dong. Optimization and Application of Ultra-Deep Well Casing Program in Yuanba Area[J]. Petroleum Drilling Techniques, 2013, 41(4): 83-86. DOI: 10.3969/j.issn.1001-0890.2013.04.018 |
[10] | Yan Guangqing, Liu Kuangxiao, Guo Ruichang, Liu Jianhua, Wu Haiyan. Ultra-Deep Sidetracking in Well Yuanba 272H[J]. Petroleum Drilling Techniques, 2013, 41(1): 113-117. DOI: 10.3969/j.issn.1001-0890.2013.01.022 |
1. |
刘钰川, 高飞, 刘崇江, 马强, 张晓静. 苏丹油田高含水井动态可调找堵水技术研究与应用. 采油工程. 2020(01): 37-41+80-81 .
![]() | |
2. |
刘欢乐, 付道明, 郑明学, 周明, 任志远. 腐蚀环境下基于井筒完整性与流动保障的完井技术. 大庆石油地质与开发. 2017(03): 83-88 .
![]() |