Citation: | PENG Hanxiu, ZHAO Jianguo, WANG Ju, et al. Development and performance evaluation of the electro-hydraulic control system of a telescopic downhole robot [J]. Petroleum Drilling Techniques,2023, 51(3):66-72. DOI: 10.11911/syztjs.2023010 |
a telescopic downhole robot was developed, whose control system is the key point that affects its reliability and stability as well. According to the working mechanism of the robot, a novel electro-hydraulic control system was innovated. Further, a numerical simulation model based on electro-hydraulic coupling control was established by comprehensively considering the electric and hydraulic systems, and actuators as well. By analyzing the influence of system fluid rate, traction, and wellbore diameter on the robot kinematics, the movement of the robot under different working parameters was revealed. An experimental scheme of the electro-hydraulic control system was designed, and the influence of the system fluid rate on the motion cycle of the robot was studied. The experimental results show that the simulation curve of the motion cycle of the robot under different system fluid rate is basically consistent with the experimental curve. The research results can provide a theoretical basis for designing and studying hydraulic telescopic downhole robots.
[1] |
史配铭,倪华峰,石崇东,等. 苏里格致密气藏超长水平段水平井钻井完井关键技术[J]. 石油钻探技术,2022,50(1):13–21.
SHI Peiming, NI Huafeng, SHI Chongdong, et al. Key technologies for drilling and completing horizontal wells with ultra-long horizontal sections in the Sulige tight gas reservoirs[J]. Petroleum Drilling Techniques, 2022, 50(1): 13–21.
|
[2] |
袁光杰,付利,王元,等. 我国非常规油气经济有效开发钻井完井技术现状与发展建议[J]. 石油钻探技术,2022,50(1):1–12.
YUAN Guangjie, FU Li, WANG Yuan, et al. The up-to-date drilling and completion technologies for economic and effective development of unconventional oil & gas and suggestions for further improvements[J]. Petroleum Drilling Techniques, 2022, 50(1): 1–12.
|
[3] |
刘清友. 未来智能钻井系统[J]. 智能系统学报,2009,4(1):16–20.
LIU Qingyou. Future intelligent drilling technology[J]. CAAI Transactions on Intelligent Systems, 2009, 4(1): 16–20.
|
[4] |
MCINTOSH T, BAROS K J, GERVAIS J G, et al. A vibratory tool study on extended reach horizontals during coiled tubing drillout in the Eagle Ford shale[R]. SPE 179087, 2016.
|
[5] |
赵建国. 页岩气水平井固井管串结构优化设计[D]. 成都: 西南石油大学, 2014.
ZHAO Jianguo. Optimum design of pipe string structure in horizontal well of shale gas[D]. Chengdu: Southwest Petroleum University, 2014.
|
[6] |
张迪盛,郭晓乐,王飞文,等. 连续油管钻井井下增压技术探析[J]. 中国石油和化工标准与质量,2019,39(5):255–256.
ZHANG Disheng, GUO Xiaole, WANG Feiwen, et al. Discussion on downhole pressurization technology in coiled tubing drilling[J]. China Petroleum and Chemical Standard and Quality, 2019, 39(5): 255–256.
|
[7] |
吕保山. 水平井钻井摩阻影响因素及减摩技术分析[J]. 石化技术,2021,28(10):110–111. doi: 10.3969/j.issn.1006-0235.2021.10.051
LYU Baoshan. Influence factors of friction in horizontal well drilling and analysis of friction reduction technology[J]. Petrochemical Industry Technology, 2021, 28(10): 110–111. doi: 10.3969/j.issn.1006-0235.2021.10.051
|
[8] |
武金平. 分析定向井水平井摩阻控制与优化处理[J]. 石化技术,2020,27(1):350. doi: 10.3969/j.issn.1006-0235.2020.01.222
WU Jinping. Analyze friction control and optimization treatment of directional well and horizontal well[J]. Petrochemical Industry Technology, 2020, 27(1): 350. doi: 10.3969/j.issn.1006-0235.2020.01.222
|
[9] |
BARTON S, BAEZ F, ALALI A. Drilling performance improvements in gas shale plays using a novel drilling agitator device[R]. SPE 144416, 2011.
|
[10] |
孔维升,李晓明,韩成福,等. 致密气藏二开结构水平井钻井液体系及现场应用[J]. 钻井液与完井液,2023,40(1):73–81.
KONG Weisheng, LI Xiaoming, HAN Chengfu, et al. The field application of a drilling fluid for a two-interval horizontal well penetrating tight gas reservoir[J]. Drilling Fluid & Completion Fluid, 2023, 40(1): 73–81.
|
[11] |
张勤,倪华峰,王清臣. 长庆致密气田超长水平段钻井降摩减阻技术[J]. 石油钻采工艺,2022,44(6):671–677.
ZHANG Qin, NI Huafeng, WANG Qingchen. Drag reduction technology for ultra-long horizontal drilling in the Changqing tight gas reservoir[J]. Oil Drilling & Production Technology, 2022, 44(6): 671–677.
|
[12] |
白相林,张旭堂,刘文剑. 水平井牵引机器人自动定心机构动态仿真[J]. 石油勘探与开发,2010,37(1):104–110. doi: 10.1016/S1876-3804(10)60019-5
BAI Xianglin, ZHANG Xutang, LIU Wenjian. Dynamic simulation of auto-centralizer for horizontal well traction robot based on ADAMS[J]. Petroleum Exploration and Development, 2010, 37(1): 104–110. doi: 10.1016/S1876-3804(10)60019-5
|
[13] |
刘清友,董润,耿凯,等. 井下机器人研究进展与应用展望[J]. 石油钻探技术,2019,47(3):50–55.
LIU Qingyou, DONG Run, GENG Kai, et al. The status of current research on downhole robots and their multiple applications[J]. Petroleum Drilling Techniques, 2019, 47(3): 50–55.
|
[14] |
侯学军,高德利,沈忠厚. 微小井眼连续油管钻井牵引器系统结构设计[J]. 石油钻采工艺,2013,35(2):1–5. doi: 10.3969/j.issn.1000-7393.2013.02.003
HOU Xuejun, GAO Deli, SHEN Zhonghou. Structure design of micro-hole coiled tubing sliding drilling tractor system[J]. Oil Drilling & Production Technology, 2013, 35(2): 1–5. doi: 10.3969/j.issn.1000-7393.2013.02.003
|
[15] |
乔晋崴,尚建忠,陈循,等. 基于凸轮自锁原理的伸缩式管道机器人设计[J]. 机械工程学报,2010,46(11):83–88. doi: 10.3901/JME.2010.11.083
QIAO Jinwei, SHANG Jianzhong, CHEN Xun, et al. Development of an inchworm in-pipe robot based on the cam self-locked principle[J]. Journal of Mechanical Engineering, 2010, 46(11): 83–88. doi: 10.3901/JME.2010.11.083
|
[16] |
刘清友, 朱海燕, 陶雷. 一种钻鱼刺状多级分支水平井页岩气储层钻完井和增产的方法: CN201410665671. X[P]. 2015-04-22.
LIU Qingyou, ZHU Haiyan, TAO Lei. A method for drilling, completion and increasing production of multistage which likes fishbone in horizontal well of shale gas reservoir: CN201410665671. X[P]. 2015-04-22.
|
[17] |
刘清友,郑威,杨亚强,等. 伸缩式井下牵引器双向锁止机构设计[J]. 西南石油大学学报(自然科学版),2018,40(1):1–10.
LIU Qingyou, ZHENG Wei, YANG Yaqiang, et al. Two-way locking mechanism design for telescopic downhole tractors[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2018, 40(1): 1–10.
|
[18] |
CHEN Yonghua, LIU Qingyou, REN Tao. A simple and novel helical drive in-pipe robot[J]. Robotica, 2015, 33(4): 920–932. doi: 10.1017/S0263574714000599
|
[19] |
刘清友, 杨亚强, 朱海燕, 等. 一种基于液压控制的伸缩式井下牵引器的控制系统: CN201610868754.8[P]. 2017-01-04.
LIU Qingyou, YANG Yaqiang, ZHU Haiyan, et al. Control system of telescopic downhole tractor based on hydraulic control: CN201610868754.8[P]. 2017-01-04.
|
[20] |
朱海燕, 赵建国, 刘清友, 等. 一种微小井眼水平井连续油管钻井机器人的支撑结构: CN201710720306.8[P]. 2018-02-16.
ZHU Haiyan, ZHAO Jianguo, LIU Qingyou, et al. A support structure for a coiled tubing drilling robot in a horizontal well with a micro borehole: CN201710720306.8[P]. 2018-02-16.
|
[21] |
LIU Qingyou, ZHAO Jianguo, ZHU Haiyan, et al. A novel double bevel support structure for downhole robot[J]. Arabian Journal for Science and Engineering, 2019, 44(2): 1069–1079. doi: 10.1007/s13369-018-3316-x
|
[22] |
刘娜娜. 井下机器人驱动机构结构优化与实验研究[D]. 西安: 西安石油大学, 2020.
LIU Nana. Structural optimization and experimental research of underground robot drive mechanism[D]. Xi’an: Xi’an Shiyou University, 2020.
|
[23] |
吴军军, 吴伟. 基于BP神经网络的PID控制在油气井井下机器人中的运用[J]. 石化技术, 2016, 23(10): 140-141.
WU Junjun, WU Wei. Application of PID control in down-hole robot based on BP neural network[J]. Petrochemical Industry Technology, 2016, 23(10): 140-141.
|
[24] |
MOCK P W. Expandable ramp gripper: US7954562B2[P]. 2011-06-07.
|
[25] |
BLOOM D, MOORE N B, KRUEGER R E V. Gripper assembly for downhole tools: US6640894B2[P]. 2003-11-04.
|