Citation: | XIE Guanbao. Analysis of response influencing factors and detection characteristics of hybrid dipole remote detection [J]. Petroleum Drilling Techniques,2022, 50(6):28-34. DOI: 10.11911/syztjs.2022108 |
Accomplishing real-time detection and accurate imaging of a formation boundary is one of the current urgent and difficult points of logging while drilling (LWD). However, existing LWD technologies face problems such as overlong instruments, difficult signal synchronization, and large detection blind areas,etc. Therefore, in this paper, closed and open coils were employed as transmitter and receiver coils, respectively, and a new hybrid dipole antenna system was designed. In addition, the structure and the measurement principle of the system were explained, and the method of converting measured electric potential signals into geological signals was established. The response law and influencing factors of remote detection based on electric field signals were analyzed. Accordingly, the relationship of the real and imaginary parts of the geological signals with the coil spacing and working frequency of the hybrid dipole remote detection in typical laminated media was studied. The azimuth sensitivity of the geological signals to the formation interface, and the influencing law of resistivity and contrast on the boundary detection ability were investigated. Finally, with a single interface model, the maximum boundary detection distance of the hybrid dipole remote detection method under short coil spacing and multiple working frequencies was determined. The research results can provide a theoretical basis for the development of logging instruments with hybrid dipole remote detection.
[1] |
李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001
LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
|
[2] |
张辛耘,王敬农,郭彦军. 随钻测井技术进展和发展趋势[J]. 测井技术,2006,30(1):10–15. doi: 10.3969/j.issn.1004-1338.2006.01.002
ZHANG Xinyun, WANG Jingnong, GUO Yanjun. Advances and trends in logging while drilling technology[J]. Well Logging Technology, 2006, 30(1): 10–15. doi: 10.3969/j.issn.1004-1338.2006.01.002
|
[3] |
黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132
HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132
|
[4] |
杨震,文艺,肖红兵. 随钻方位电磁波仪器探测电阻率各向异性新方法[J]. 石油钻探技术,2016,44(3):115–120. doi: 10.11911/syztjs.201603021
YANG Zhen, WEN Yi, XIAO Hongbing. A new method of detecting while drilling resistivity anisotropy with azimuthal electromagnetic wave tools[J]. Petroleum Drilling Techniques, 2016, 44(3): 115–120. doi: 10.11911/syztjs.201603021
|
[5] |
康正明,柯式镇,李新,等. 随钻电阻率成像测井仪定量评价地层界面探究[J]. 石油钻探技术,2020,48(4):124–130. doi: 10.11911/syztjs.2020087
KANG Zhengming, KE Shizhen, LI Xin, et al. Probe into quantitative stratigraphic interface evaluation using a resistivity imaging LWD tool[J]. Petroleum Drilling Techniques, 2020, 48(4): 124–130. doi: 10.11911/syztjs.2020087
|
[6] |
谢关宝,杨震,赵文杰. 基于ICCG方法的随钻方位电磁波测井响应模拟研究[J]. 测井技术,2015,39(1):27–31. doi: 10.16489/j.issn.1004-1338.2015.01.006
XIE Guanbao, YANG Zhen, ZHAO Wenjie. Numerical study on the response of azimuth electromagnetic wave resistivity while drilling based on the ICCG method[J]. Well Logging Technology, 2015, 39(1): 27–31. doi: 10.16489/j.issn.1004-1338.2015.01.006
|
[7] |
YANG Jian, OMERAGIC D, LIU Chengbing, et al. Bed-boundaryeffect removal to aid formation resistivity interpretation from LWDpropagation measurements at all dip angles[R]. SPWLA-2005-F,2005.
|
[8] |
LI Hu, ZHOU J. Distance of detection for LWD deep and ultra-deep azimuthal resistivity tools[R]. SPWLA-2017-PPPP, 2017.
|
[9] |
王磊,范宜仁,袁超,等. 随钻方位电磁波测井反演模型选取及适用性[J]. 石油勘探与开发,2018,45(5):914–922. doi: 10.11698/PED.2018.05.18
WANG Lei, FAN Yiren, YUAN Chao, et al. Selection criteria and feasibility of the inversion model for azimuthal electromagnetic logging while drilling (LWD)[J]. Petroleum Exploration and Development, 2018, 45(5): 914–922. doi: 10.11698/PED.2018.05.18
|
[10] |
LI Shanjun, CHEN Jiefu, BINFORD T L, Jr. Using new LWD measurements to evaluate formation resistivity anisotropy at any dip angle[R]. SPWLA-2014-EEEE, 2014.
|
[11] |
LI Shanjun. System and methodology of look ahead and look around LWD tool: US 2018/0306024 A1[P]. 2018 − 10 − 25.
|
[12] |
WANG Lei, LI Hu, FAN Yiren, et al. Sensitivity analysis and inversion processing of azimuthal resistivity logging-while-drilling measurements[J]. Journal of Geophysics and Engineering, 2018, 15(6): 2339–2349. doi: 10.1088/1742-2140/aacbf4
|
[13] |
王磊, 范宜仁, 谢关宝, 等. 基于电场信息的随钻电磁波短源距远探测方法研究[C]//2020年中国地球科学联合学术年会论文集. 重庆: 中国地球物理学会, 2020: 3687.
WANG Lei, FAN Yiren, XIE Guanbao, et al. Research on short source distance and long distance detection method of electromagnetic wave while drilling based on electric field information[C]//Proceedings of the 2020 China Geoscience Joint Academic Annual Conference. Chongqing: Chinese Geophysical Society, 2020: 3687.
|
1. |
曲博文,谭宝海,张凯,陈雪莲. 自适应声波测井换能器激励电路设计. 石油钻探技术. 2024(06): 141-147 .
![]() |