Citation: | LIU Honglei, ZHOU Linbo, CHEN Zuo, et al. The up-to-date electric shale gas fracturing technologies of Sinopec and suggestions for further improvements [J]. Petroleum Drilling Techniques,2023, 51(1):62-68. DOI: 10.11911/syztjs.2022100 |
As technology develops and the requirements for environmental protection rise, the disadvantages of traditional diesel-powered fracturing pumping units manifested themselves and they include loud construction noise, high energy consumption, and large space requirements for operations. As a result, electric fracturing equipment has gradually been adopted on a large scale owing to its advantages of high power, high pumping rate, low noise and energy consumption, and small space requirements for operations. The characteristics of electric fracturing technologies and their development and application history in China and abroad were studied and enumerated. The application scale, timeliness, and cost of Sinopec’s electric fracturing technologies were highlighted, and the shortages were analyzed. Multiple suggestions were proposed, including comprehensively upgrading the electric fracturing system, improving treatment process management, and conducting large-scale promotion and application of all-electric fracturing technologies. This research is expected to promote the development and application of fracturing technologies and provide economic technical means for the development of deep and normal-pressure shale gas in China.
[1] |
我国页岩气可采资源潜力为25万亿立方米[EB/OL]. (2012-03- 29)[2022-01-10]. http://www.cinic.org.cn/xw/kx/279172.html?from=timeline.
The recoverable resource potential of shale gas in China is 25 trillion m3[EB/OL]. (2012-03-29) [2022-01-12]. http://www.cinic.org.cn/xw/kx/279172.html?from=timeline.
|
[2] |
吕红桥. 2020年我国页岩气产量增长超过3成 成为天然气增产主力军[EB/OL]. (2022-02-10)[2022-0-11].https://baijiahao.baidu.com/s?id=1691289018212061353&wfr=spider&for=pc.
LYU Hongqiao. China’s shale gas production will increase by more than 30% in 2020 and become the main force of natural gas production increase[EB/OL]. (2022-02-10) [2022-02-11].https://baijiahao.baidu.com/s?id=1691289018212061353&wfr=spider&for=pc.
|
[3] |
曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073
ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep sShale gas horizontal wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
|
[4] |
李军,李玉梅,张德龙,等. 页岩气井分段压裂套损影响因素分析[J]. 断块油气田,2017,24(3):387–390.
LI Jun, LI Yumei, ZHANG Delong, et al. Analysis of casing damage for staged fracturing in shale gas well[J]. Fault-Block Oil & Gas Field, 2017, 24(3): 387–390.
|
[5] |
陈新安. 页岩气水平井分段压裂微地震监测认识及应用[J]. 特种油气藏,2017,24(1):170–174.
CHEN Xin’an. Understanding and application of microseism monitoring over staged fracturing in horizontal wells for shale gas development[J]. Special Oil & Gas Reservoirs, 2017, 24(1): 170–174.
|
[6] |
张树立,李心成. 适合中国大型页岩气压裂成套装备的解决方案[J]. 石油机械,2018,46(12):60–67.
ZHANG Shuli, LI Xincheng. The solution of massive hydraulic fracturing of shale gas in China[J]. China Petroleum Machinery, 2018, 46(12): 60–67.
|
[7] |
杨怀成,夏苏疆,高启国,等. 常压页岩气全电动压裂装备及技术示范应用效果分析[J]. 油气藏评价与开发,2021,11(3):348–355.
YANG Huaicheng, XIA Sujiang, GAO Qiguo, et al. Application effect of full-electric fracturing equipment and technology for normal pressure shale gas[J]. Reservoir Evaluation and Development, 2021, 11(3): 348–355.
|
[8] |
张国荣,王俊方,张龙富,等. 南川常压页岩气田高效开发关键技术进展[J]. 油气藏评价与开发,2021,11(3):365–376.
ZHANG Guorong, WANG Junfang, ZHANG Longfu, et al. Key technical progress in efficient development of Nanchuan normalpressure shale gas field[J]. Reservoir Evaluation and Development, 2021, 11(3): 365–376.
|
[9] |
赵绪平,孔丹,常亮. 2500型超高压页岩气压裂车开发研究[J]. 石油规划设计,2017,28(3):12–14.
ZHAO Xuping, KONG Dan, CHANG Liang. Development and research of model 2500 ultra high pressure shale gas fracturing truck[J]. Petroleum Planning & Engineering, 2017, 28(3): 12–14.
|
[10] |
田雨,谢梅英. 新型大功率电动压裂泵组的研制[J]. 石油机械,2017,45(4):94–97.
TIAN Yu, XIE Meiying. Development of new-type superpower electric fracturing pump skid[J]. China Petroleum Machinery, 2017, 45(4): 94–97.
|
[11] |
王云海,陈新龙,吴汉川,等. 页岩气压裂连续输砂关键设备的研制[J]. 石油机械,2016,44(3):102–104.
WANG Yunhai, CHEN Xinlong, WU Hanchuan, et al. Continuous sand transport unit for fracturing in shale gas development[J]. China Petroleum Machinery, 2016, 44(3): 102–104.
|
[12] |
王晓宇. 国外压裂装备与技术新进展[J]. 石油机械,2016,44(11):72–79.
WANG Xiaoyu. Advances in foreign fracturing equipment and technology[J]. China Petroleum Machinery, 2016, 44(11): 72–79.
|
[13] |
张斌,李磊,邱勇潮,等. 电驱压裂设备在页岩气储层改造中的应用[J]. 天然气工业,2020,40(5):50–57. doi: 10.3787/j.issn.1000-0976.2020.05.006
ZHANG Bin, LI Lei, QIU Yongchao, et al. Application of electric drive fracturing equipment in shale gas reservoir stimulation[J]. Natural Gas Industry, 2020, 40(5): 50–57. doi: 10.3787/j.issn.1000-0976.2020.05.006
|
[14] |
王庆群. 利用电力开展页岩气压裂规模应用的分析及建议[J]. 石油机械,2018,46(7):89–93.
WANG Qingqun. Analysis and suggestion on the application of electric power on shale gas fracturing[J]. China Petroleum Machinery, 2018, 46(7): 89–93.
|
[15] |
樊开赟,荣双,周劲,等. 电动压裂泵在页岩气压裂中的应用[J]. 钻采工艺,2017,40(5):81–83. doi: 10.3969/J.ISSN.1006-768X.2017.05.25
FAN Kaiyun, RONG Shuang, ZHOU Jin, et al. Application of electric fracturing pump in fracturing in shale gas reservoirs[J]. Drilling & Production Technology, 2017, 40(5): 81–83. doi: 10.3969/J.ISSN.1006-768X.2017.05.25
|
[16] |
刘红磊,韩倩,李颖,等. 彭水区块水平井清水连续加砂压裂技术[J]. 石油钻探技术,2015,43(1):13–19. doi: 10.11911/syztjs.201501003
LIU Honglei, HAN Qian, LI Ying, et al. Water fracturing with continuous sand for horizontal wells in the Pengshui block[J]. Petroleum Drilling Techniques, 2015, 43(1): 13–19. doi: 10.11911/syztjs.201501003
|
[17] |
曾雨辰,杨保军. 页岩气水平井大型压裂设备配套及应用[J]. 石油钻采工艺,2013,35(6):78–82.
ZENG Yuchen, YANG Baojun. Equipment outfitting and application for large-scale fracturing in shale gas horizontal wells[J]. Oil Drilling & Production Technology, 2013, 35(6): 78–82.
|
[18] |
吴汉川. 大型压裂装备应用问题解析及发展方向[J]. 石油机械,2017,45(12):53–57.
WU Hanchuan. Issue Analysis of large scale fracturing equipment application and its development trend[J]. China Petroleum Machi-nery, 2017, 45(12): 53–57.
|
[19] |
张增年,李华川,郑家伟,等. 压裂设备应用评价及技术发展展望[J]. 钻采工艺,2020,43(2):41–44. doi: 10.3969/J.ISSN.1006-768X.2020.02.11
ZHANG Zengnian, LI Huachuan, ZHENG Jiawei, et al. Application evaluation and technical development prospect of fracturing equipment[J]. Drilling & Production Technology, 2020, 43(2): 41–44. doi: 10.3969/J.ISSN.1006-768X.2020.02.11
|
[20] |
童征,展恩强,刘颖,等. 国内电驱压裂经济性和制约因素分析[J]. 国际石油经济,2020,28(7):53–62. doi: 10.3969/j.issn.1004-7298.2020.07.006
TONG Zheng, ZHAN Enqiang, LIU Ying, et al. Analysis of economy and constraints of electric-powered fracturing application in China[J]. International Petroleum Economics, 2020, 28(7): 53–62. doi: 10.3969/j.issn.1004-7298.2020.07.006
|
[21] |
程强. 中国页岩气发展迎来2.0时代[N]. 中国石化报, 2020−12−07(005).
CHENG Qiang. China shale gas development ushered in the 2.0 era[N]. Sinopec News, 2020−12−07(005).
|
1. |
赵崇胜,王波,苟波,罗鹏飞,陈国军,巫国全. 深部煤层气油电混驱压裂设备配置与工艺技术. 油气藏评价与开发. 2025(02): 292-299 .
![]() | |
2. |
丁乾申,吴春新,李金泽,邹德昊,夏金娜,何滨. 电热化学聚能冲击波致裂储层数值模拟及破岩规律研究. 石油钻探技术. 2025(01): 67-74 .
![]() | |
3. |
张国友. 页岩油全电动压裂装备配置与作业技术研究. 石油机械. 2024(03): 102-107 .
![]() | |
4. |
陈万锋. 道路工程中的技术分析及预制混凝土路面板的力学性能分析. 交通科技与管理. 2024(06): 83-85 .
![]() | |
5. |
乔玲茜,王本强,陈雨松,何启越,蔡金赤,续化蕾,江厚顺. 页岩气藏暂堵转向压裂裂缝扩展规律模拟. 断块油气田. 2024(02): 241-245+265 .
![]() | |
6. |
杨亚东,邹龙庆,王一萱,朱静怡,李小刚,熊俊雅. 川南深层页岩气藏压裂裂缝导流能力影响因素分析. 特种油气藏. 2024(05): 162-167 .
![]() | |
7. |
尤璐. 页岩油气压裂作业环境保护技术浅析. 化工安全与环境. 2023(09): 65-68 .
![]() | |
8. |
李方淼. 电动压裂供电技术研究. 石油和化工设备. 2023(08): 129-132 .
![]() | |
9. |
唐瑞欢. 川渝地区页岩气压裂设备发展新方向. 石油机械. 2023(09): 94-100 .
![]() | |
10. |
郭建春,任文希,曾凡辉,罗扬,李宇麟,杜肖泱. 非常规油气井压裂参数智能优化研究进展与发展展望. 石油钻探技术. 2023(05): 1-7+179 .
![]() |