Citation: | GE Lei, YANG Chunxu, GUO Bing, et al. Experimental study on initial bubble size distribution after gas invading [J]. Petroleum Drilling Techniques,2023, 51(2):46-53. DOI: 10.11911/syztjs.2022096 |
In order to improve the accuracy of the calculation results of the gas-liquid two-phase flow along the bottom hole after gas cut, the diameter distribution characteristics of initial bubbles at the bottom hole after gas cut were experimentally studied, and a prediction model for the average diameter of the initial bubbles was established. Xanthan gum solutions with different mass fractions were used to simulate drilling fluids, and porous media were utilized to simulate the formations. The bottom hole diameter distribution characteristics of the bubble groups were observed experimentally under different liquid phase rheology, average pore diameter of formation, and gas cut rates. The experimental results showed that a larger yield strength of the simulated drilling fluid and a higher gas cut rate resulted in a larger distribution of diameter range of the initial bubbles generated. In addition, the diameter of bubbles with the highest frequency of occurences and that of the biggest bubbles both increased. However, the formation’s pore diameter had no obvious effect on the initial bubble diameter. According to the experimental results, an experimental prediction model for the average diameter of the initial bubbles invading the bottom hole was established, which comprehensively considered the influence factors such as drilling fluid viscosity, gas flow rate, and surface tension. Furthermore, an prediction model for the average diameter of the initial bubbles invading the well bottom was established by considering the influence of the radial intrusion characteristics of the gas at the borehole wall and the hole deviation angle during the actual drilling. The establishment of the prediction model for the diameter of the initial bubbles at the bottom hole provides theoretical support for the accurate calculation of the gas-liquid two-phase flow along the wellbore after gas cut.
[1] |
王果. 基于线性节流阀的MPD井筒压力调控方法[J]. 石油钻采工艺,2021,43(2):197–202. doi: 10.13639/j.odpt.2021.02.010
WANG Guo. MPD wellbore pressure control method based on linear throttle valve[J]. Oil Drilling & Production Technology, 2021, 43(2): 197–202. doi: 10.13639/j.odpt.2021.02.010
|
[2] |
史殊哲,吴晓东,韩国庆,等. 内边界旋转的垂直井筒气液两相流型和压降梯度[J]. 石油钻采工艺,2019,41(1):89–95. doi: 10.13639/j.odpt.2019.01.015
SHI Shuzhe, WU Xiaodong, HAN Guoqing, et al. Flow pattern and pressure gradient of the gas-liquid two-phase flow in the vertical wellbore with rotary inner boundary[J]. Oil Drilling & Production Technology, 2019, 41(1): 89–95. doi: 10.13639/j.odpt.2019.01.015
|
[3] |
孙宝江,王雪瑞,王志远,等. 控制压力固井技术研究进展及展望[J]. 石油钻探技术,2019,47(3):56–61. doi: 10.11911/syztjs.2019066
SUN Baojiang, WANG Xuerui, WANG Zhiyuan, et al. Research development and outlook for managed pressure cementing technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 56–61. doi: 10.11911/syztjs.2019066
|
[4] |
彭明佳,周英操,郭庆丰,等. 窄密度窗口精细控压钻井重浆帽优化技术[J]. 石油钻探技术,2015,43(6):24–28. doi: 10.11911/syztjs.201506005
PENG Mingjia, ZHOU Yingcao, GUO Qingfeng, et al. Optimization of heavy mud cap in narrow density window precise managed pressure drilling[J]. Petroleum Drilling Techniques, 2015, 43(6): 24–28. doi: 10.11911/syztjs.201506005
|
[5] |
余意,王雪瑞,柯珂,等. 极地钻井井筒温度压力预测模型及分布规律研究[J]. 石油钻探技术,2021,49(3):11–20. doi: 10.11911/syztjs.2021047
YU Yi, WANG Xuerui, KE Ke, et al. Prediction model and distribution law study of temperature and pressure of the wellbore in drilling in arctic region[J]. Petroleum Drilling Techniques, 2021, 49(3): 11–20. doi: 10.11911/syztjs.2021047
|
[6] |
张玉山,赵维青,张星星,等. 深水井气侵在不同类型钻井液中运动特征[J]. 石油钻采工艺,2016,38(3):310–314. doi: 10.13639/j.odpt.2016.03.007
ZHANG Yushan, ZHAO Weiqing, ZHANG Xingxing, et al. Movement features of gas in different types of drilling fluid during kicking in deepwater wells[J]. Oil Drilling & Production Technology, 2016, 38(3): 310–314. doi: 10.13639/j.odpt.2016.03.007
|
[7] |
孙士慧,于晓文,于国庆,等. 侵入气体沿井筒的上升规律研究[J]. 数学的实践与认识,2017,47(10):104–111.
SUN Shihui, YU Xiaowen, YU Guoqing, et al. Rising migration rule of gas kick in wellbore[J]. Mathematics in Practice and Theory, 2017, 47(10): 104–111.
|
[8] |
孙宝江,王雪瑞,孙小辉,等. 井筒四相流动理论在深水钻完井工程与测试领域的应用与展望[J]. 天然气工业,2020,40(12):95–105. doi: 10.3787/j.issn.1000-0976.2020.12.011
SUN Baojiang, WANG Xuerui, SUN Xiaohui, et al. Application and prospect of the wellbore four-phase flow theory in the field of deepwater drilling and completion engineering and testing[J]. Natural Gas Industry, 2020, 40(12): 95–105. doi: 10.3787/j.issn.1000-0976.2020.12.011
|
[9] |
孙士慧. 井底恒压钻井井筒流动模型研究[D]. 大庆: 东北石油大学, 2014.
SUN Shihui. Research on wellbore flow model for managed pressure drilling at constant bottomhole pressure[D]. Daqing: Northeast Petroleum University, 2014.
|
[10] |
孟也,李相方,何敏侠,等. 气泡卡断过程中的喉道液领形态与聚并模型[J]. 断块油气田,2019,26(5):632–637.
MENG Ye, LI Xiangfang, HE Minxia, et al. Shape and coalescence model of liquid collar in pore-throat during snap-off[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 632–637.
|
[11] |
韦红术,杜庆杰,曹波波,等. 深水油气井关井期间井筒含天然气水合物相变的气泡上升规律研究[J]. 石油钻探技术,2019,47(2):42–49. doi: 10.11911/syztjs.2019035
WEI Hongshu, DU Qingjie, CAO Bobo, et al. The ascending law of gas bubbles in a wellbore considering the phase change of natural gas hydrates during deepwater well shut-in[J]. Petroleum Drilling Techniques, 2019, 47(2): 42–49. doi: 10.11911/syztjs.2019035
|
[12] |
段文广,孙宝江,潘登,等. 考虑气体悬浮的关井井筒压力计算方法[J]. 中国石油大学学报(自然科学版),2021,45(5):88–96.
DUAN Wenguang, SUN Baojiang, PAN Deng, et al. A wellbore pressure calculation method considering gas entrapment in wellbore shut-in condition[J]. Journal of China University of Petroleum(Edition of Natural Science), 2021, 45(5): 88–96.
|
[13] |
周强,张志东,李淼,等. 早期溢流监测方法[J]. 油气田地面工程,2012,31(3):72–73. doi: 10.3969/j.issn.1006-6896.2012.3.036
ZHOU Qiang, ZHANG Zhidong, LI Miao, et al. Early overflow monitoring method[J]. Oil-Gas Field Surface Engineering, 2012, 31(3): 72–73. doi: 10.3969/j.issn.1006-6896.2012.3.036
|
[14] |
李旭光,杨波,孙晓峰. 关井侵入气体运移规律探讨[J]. 长江大学学报(自科版),2013,10(14):65–66. doi: 10.16772/j.cnki.1673-1409.2013.14.023
LI Xuguang, YANG Bo, SUN Xiaofeng. Discussion on migration law of shut in intrusive gas[J]. Journal of Yangtze University (Natural Science Edition), 2013, 10(14): 65–66. doi: 10.16772/j.cnki.1673-1409.2013.14.023
|
[15] |
尹浚羽,蒋宏伟,李磊,等. 井底气泡的形成过程及其平均初始直径计算[J]. 科学技术与工程,2014,14(19):30–33. doi: 10.3969/j.issn.1671-1815.2014.19.006
YIN Junyu, JIANG Hongwei, LI Lei, et al. Bubbles formation from the Bottom region of borehole and their initial average diameter calculation[J]. Science Technology and Engineering, 2014, 14(19): 30–33. doi: 10.3969/j.issn.1671-1815.2014.19.006
|
[16] |
ZHANG Lei, SHOJI M. Aperiodic bubble formation from a submerged orifice[J]. Chemical Engineering Science, 2001, 56(18): 5371–5381. doi: 10.1016/S0009-2509(01)00241-X
|
[17] |
KAZAKIS N A, MOUZA A A, PARAS S V. Experimental study of bubble formation at metal porous spargers: Effect of liquid properties and sparger characteristics on the initial bubble size distribution[J]. Chemical Engineering Journal, 2008, 137(2): 265–281. doi: 10.1016/j.cej.2007.04.040
|
[18] |
SUN Baojiang, PAN Shaowei, ZHANG Jianbo, et al. A dynamic model for predicting the geometry of bubble entrapped in yield stress fluid[J]. Chemical Engineering Journal, 2020, 391: 123569. doi: 10.1016/j.cej.2019.123569
|
[19] |
WANG Zhiyuan, LOU Wenqiang, SUN Baojiang, et al. A model for predicting bubble velocity in yield stress fluid at low Reynolds number[J]. Chemical Engineering Science, 2019, 201: 325–338. doi: 10.1016/j.ces.2019.02.035
|
[20] |
LOU Wenqiang, WANG Zhiyuan, PAN Shaowei, et al. Prediction model and energy dissipation analysis of Taylor bubble rise velocity in yield stress fluid[J]. Chemical Engineering Journal, 2020, 396: 125261. doi: 10.1016/j.cej.2020.125261
|
[21] |
尹浚羽,周英操,张辉,等. 钻井环空中赫-巴流体内气泡的上升速度[J]. 西南石油大学学报(自然科学版),2016,38(3):135–143.
YIN Junyu, ZHOU Yingcao, ZHANG Hui, et al. Bubble rise velocity in Herchel-Bulkley fluid of drilling annulus[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2016, 38(3): 135–143.
|
[22] |
艾池,张东,任帅勤,等. 环空气泡融合特性对流体流动规律影响研究[J]. 石油地质与工程,2011,25(3):102–105. doi: 10.3969/j.issn.1673-8217.2011.03.032
AI Chi, ZHANG Dong, REN Shuaiqin, et al. Influence of bubble fusion characteristics in annulus on fluid flow law[J]. Petroleum Geology and Engineering, 2011, 25(3): 102–105. doi: 10.3969/j.issn.1673-8217.2011.03.032
|
[23] |
ONG E E S, O’BYRNE S, LIOW J L. Yield stress measurement of a thixotropic colloid[J]. Rheologica Acta, 2019, 58(6): 383–401.
|
[24] |
MOUZA A A, DALAKOGLOU G K, PARAS S V. Effect of liquid properties on the performance of bubble column reactors with fine pore spargers[J]. Chemical Engineering Science, 2005, 60(5): 1465–1475. doi: 10.1016/j.ces.2004.10.013
|
[25] |
包立炯. 毛细管管口气泡生长及脱离特性研究[D]. 重庆: 重庆大学, 2007.
BAO Lijiong. The study on the characteristics of air bubble growth and departure at the orifice of capillary tubes[D]. Chongqing: Chongqing University, 2007.
|
1. |
刘躜. 双层套管射孔技术在海上油田地层回注水井中的应用. 石化技术. 2025(01): 135-137 .
![]() | |
2. |
豆瑞杰,高婷,李强. 页岩气水平井重建井筒重复压裂技术及应用. 江汉石油职工大学学报. 2025(01): 37-40 .
![]() | |
3. |
王月双. 页岩气井水平井二次完井固井技术研究. 中国石油和化工标准与质量. 2024(01): 170-172 .
![]() | |
4. |
王伟,魏振吉,季亮,张旺,张正朝,赵海峰. 韩城区块煤层气井顶板控底重复压裂技术研究与应用. 中国科技论文. 2024(01): 33-42+49 .
![]() | |
5. |
邹林浩,宋杨,苏义脑,李玮,赵欢,盖京明,李卓伦,焦圣杰. 水平井分段压裂套管孔眼冲蚀机理研究. 特种油气藏. 2024(05): 127-135 .
![]() | |
6. |
徐建宁,胡莉莉,朱端银,郭邦瑞,王泽鹏. 变径气举柱塞变径过程受力分析与试验研究. 石油钻探技术. 2023(02): 90-94 .
![]() | |
7. |
王飞,慕立俊,陆红军,白晓虎,卜军,任佳伟. 长庆油田水平井套中套井筒再造体积重复压裂技术. 石油钻采工艺. 2023(01): 90-96 .
![]() | |
8. |
陈超峰,张一军,李强,杨晓儒,陈锐,杜宗和. 高温高压储层“光油管”试油压裂一体化工艺. 石油钻探技术. 2023(03): 113-118 .
![]() | |
9. |
赵欢,李玮,唐鹏飞,王晓,张明慧,王剑波. 压裂工况下近井筒地应力及套管载荷分布规律研究. 石油钻探技术. 2023(05): 106-111 .
![]() | |
10. |
孟胡,申颍浩,朱万雨,李小军,雷德荣,葛洪魁. 四川盆地昭通页岩气水平井水力压裂套管外载分析. 特种油气藏. 2023(05): 166-174 .
![]() | |
11. |
王聪,黄世军,赵凤兰,李金仓,陈新阳,苏哲烨,罗瑞兰. 基于波前快速法的页岩气藏重复压裂储层动用评价方法. 断块油气田. 2023(06): 940-946 .
![]() | |
12. |
王满,袁淼,闵瑞,袁涛. 自激振荡射流空化泡动力学特征及超声强化数值研究. 石油钻探技术. 2023(06): 43-49 .
![]() | |
13. |
徐肇国,王勤,余金柱,衣方宇,郑晓霞. 4-1/2″小套管井筒再造技术在老井重复压裂改造中的实践. 内蒙古石油化工. 2023(12): 91-93 .
![]() |