Citation: | GUO Jiangfeng, XU Chenyu, XIE Ranhong, et al. Study on the NMR response mechanism of micro-fractured tight sandstones [J]. Petroleum Drilling Techniques,2022, 50(4):121-128. DOI: 10.11911/syztjs.2022091 |
Micro fractures serve as important storage spaces and migration channels for fluids in tight sandstone reservoirs. In order to fully understand the NMR (nuclear magnetic resonance) response mechanism of micro-fractured tight sandstones, we constructed several digital cores of tight sandstones with different micro fractures and simulated their NMR responses under oil-water saturation conditions by employing the random walk method. The simulation results showed that the aperture and length of micro fractures as well as the water saturation in fractures were the main controlling factors in the NMR response of reservoir fluids. In addition, the increase in the aperture, length, and water saturation could result in an improvement in relaxation time and signal amplitude of the water peak. However, the relaxation time of the water peak was not affected by above factors for micro fractures with length over 100 μm. Furthermore, the relaxation time of oil peak was independent of aperture, length, and water saturation, oil content was reflected from signal amplitude, and the inclination angle of micro fractures exerted no impact on the NMR response. The research results revealed the NMR response mechanism of micro-fractured tight sandstone reservoirs and provided a theoretical basis for the identification of favorable sections with micro-fracture developed.
[1] |
贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发,2012,39(2):129–136.
JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129–136.
|
[2] |
王平,沈海超. 加拿大M致密砂岩气藏高效开发技术[J]. 石油钻探技术,2022,50(1):97–102. doi: 10.11911/syztjs.2021123
WANG Ping, SHEN Haichao. High-efficient development technologies for the M tight sandstone gas reservoir in Canada[J]. Petroleum Drilling Techniques, 2022, 50(1): 97–102. doi: 10.11911/syztjs.2021123
|
[3] |
王晓雯. 致密油藏储层敏感性评价及主控因素研究[J]. 特种油气藏,2021,28(1):103–110. doi: 10.3969/j.issn.1006-6535.2021.01.015
WANG Xiaowen. Study on reservoir sensitivity evaluation and key control factors of tight oil reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 103–110. doi: 10.3969/j.issn.1006-6535.2021.01.015
|
[4] |
施砍园,庞雄奇,王克,等. 鄂尔多斯盆地华庆地区致密砂岩油藏成藏条件研究[J]. 特种油气藏,2021,28(6):20–26. doi: 10.3969/j.issn.1006-6535.2021.06.003
SHI Kanyuan, PANG Xiongqi, WANG Ke, et al. Study on accumulation conditions of tight sandstone reservoirs in Huaqing Area, Ordos Basin[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 20–26. doi: 10.3969/j.issn.1006-6535.2021.06.003
|
[5] |
罗威,倪玲梅. 致密砂岩有效储层形成演化的主控因素:以库车坳陷巴什基奇克组砂岩储层为例[J]. 断块油气田,2020,27(1):7–12. doi: 10.6056/dkyqt202001002
LUO Wei, NI Lingmei. Main controlling factors of formation and evolution of effective reservoir in tight sandstone: taking Bashijiqike Formation sandstone reservoir in Kuqa Depression as an example[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 7–12. doi: 10.6056/dkyqt202001002
|
[6] |
ANDERS M H, LAUBACH S E, SCHOLZ C H. Microfractures: a review[J]. Journal of Structural Geology, 2014, 69(Part B): 377−394.
|
[7] |
ZHU Peng, LIN Chengyan, REN Huaiqiang, et al. Micro-fracture characteristics of tight sandstone reservoirs and its evaluation by capillary pressure curves: a case study of Permian sandstones in Ordos Basin, China[J]. Journal of Natural Gas Science and Engineering, 2015, 27(Part 1): 90 − 97.
|
[8] |
韦青,李治平,王香增,等. 裂缝性致密砂岩储层渗吸机理及影响因素:以鄂尔多斯盆地吴起地区长8储层为例[J]. 油气地质与采收率,2016,23(4):102–107. doi: 10.3969/j.issn.1009-9603.2016.04.016
WEI Qing, LI Zhiping, WANG Xiangzeng, et al. Mechanism and influence factors of imbibition in fractured tight sandstone reservoir: an example from Chang 8 reservoir of Wuqi Area in Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(4): 102–107. doi: 10.3969/j.issn.1009-9603.2016.04.016
|
[9] |
SUN Ruofan, HU Jinghong, ZHANG Yuan, et al. A semi-analytical model for investigating the productivity of fractured horizontal wells in tight oil reservoirs with micro-fractures[J]. Journal of Petroleum Science and Engineering, 2020, 186: 106781. doi: 10.1016/j.petrol.2019.106781
|
[10] |
李长海,赵伦,刘波,等. 微裂缝研究进展、意义及发展趋势[J]. 天然气地球科学,2020,31(3):402–416.
LI Changhai, ZHAO Lun, LIU Bo, et al. Research status, significance and development trend of microfractures[J]. Natural Gas Geoscience, 2020, 31(3): 402–416.
|
[11] |
黄玉欣,胡望水,尹帅. 基于动态弹性力学模型的煤系致密砂岩储层裂缝预测方法[J]. 石油钻探技术,2018,46(5):115–120. doi: 10.11911/syztjs.2018082
HUANG Yuxin, HU Wangshui, YIN Shuai. Fracture prediction method for coal-bearing tight sandstone reservoirs based on a dynamic elastic mechanics model[J]. Petroleum Drilling Techniques, 2018, 46(5): 115–120. doi: 10.11911/syztjs.2018082
|
[12] |
TALEGHANI A D, AHMADI M, WANG W, et al. Thermal reactivation of microfractures and its potential impact on hydraulic-fracture efficiency[J]. SPE Journal, 2014, 19(5): 761–770. doi: 10.2118/163872-PA
|
[13] |
JIA Zijian, XIAO Lizhi, WANG Zhizhan, et al. Magic echo for nuclear magnetic resonance characterization of shales[J]. Energy & Fuels, 2017, 31(8): 7824–7830.
|
[14] |
王志战. 国内非常规油气录井技术进展及发展趋势[J]. 石油钻探技术,2017,45(6):1–7. doi: 10.11911/syztjs.201706001
WANG Zhizhan. Technical progress and developing trends in unconventional oil and gas mud logging in China[J]. Petroleum Drilling Techniques, 2017, 45(6): 1–7. doi: 10.11911/syztjs.201706001
|
[15] |
梁灿,肖立志,周灿灿,等. 岩石润湿性的核磁共振表征方法与初步实验结果[J]. 地球物理学报,2019,62(11):4472–4481. doi: 10.6038/cjg2019M0266
LIANG Can, XIAO Lizhi, ZHOU Cancan, et al. Nuclear magnetic resonance characterizes rock wettability: preliminary experimental results[J]. Chinese Journal of Geophysics, 2019, 62(11): 4472–4481. doi: 10.6038/cjg2019M0266
|
[16] |
JIN Guowen, XIE Ranhong, LIU Mi, et al. A new method for permeability estimation using integral transforms based on NMR echo data in tight sandstone[J]. Journal of Petroleum Science and Engineering, 2019, 180: 424–434. doi: 10.1016/j.petrol.2019.05.056
|
[17] |
WU Bohan, XIE Ranhong, WANG Xiaoyu, et al. Characterization of pore structure of tight sandstone reservoirs based on fractal analysis of NMR echo data[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103483. doi: 10.1016/j.jngse.2020.103483
|
[18] |
TAN Maojin, WANG Kun, ZOU Youlong, et al. Nuclear magnetic resonance simulations of nano-scale cores and microscopic mechanisms of oil shale[J]. Fuel, 2019, 256: 115843. doi: 10.1016/j.fuel.2019.115843
|
[19] |
GUO Jiangfeng, XIE Ranhong, ZOU Youlong, et al. Numerical simulation of multi-dimensional NMR response in tight sand-stone[J]. Journal of Geophysics and Engineering, 2016, 13(3): 285–294. doi: 10.1088/1742-2132/13/3/285
|
[20] |
郭江峰,谢然红,邹友龙. 砂岩核磁共振响应模拟及受限扩散[J]. 地球物理学报,2016,59(7):2703–2712. doi: 10.6038/cjg20160733
GUO Jiangfeng, XIE Ranhong, ZOU Youlong. Simulation of NMR responses in sandstone and restricted diffusion[J]. Chinese Journal of Geophysics, 2016, 59(7): 2703–2712. doi: 10.6038/cjg20160733
|
[21] |
GUO Jiangfeng, XIE Ranhong. Numerical investigations of NMR T1–T2 map in two-phase fluid-bearing tight sandstone[J]. Applied Magnetic Resonance, 2019, 50(1): 479–495.
|
[22] |
GUO Jiangfeng, XIE Ranhong, XIAO Lizhi. Pore-fluid characterizations and microscopic mechanisms of sedimentary rocks with three-dimensional NMR: tight sandstone as an example[J]. Journal of Natural Gas Science and Engineering, 2020, 80: 103392. doi: 10.1016/j.jngse.2020.103392
|
[23] |
SUN Tianwei, YAN Weichao, WANG Haitao, et al. Developing a new NMR-based permeability model for fractured carbonate gas reservoirs[J]. Journal of Natural Gas Science and Engineering, 2016, 35(Part A): 906−919.
|
[24] |
汪勇,孙业恒,梁栋,等. 基于数字岩心与格子Boltzmann方法的致密砂岩自发渗吸模拟研究[J]. 石油科学通报,2020,5(4):458–466. doi: 10.3969/j.issn.2096-1693.2020.04.040
WANG Yong, SUN Yeheng, LIANG Dong, et al. Spontaneous imbibition simulation of tight sandstone based on digital rock and lattice Boltzmann method[J]. Petroleum Science Bulletin, 2020, 5(4): 458–466. doi: 10.3969/j.issn.2096-1693.2020.04.040
|
[25] |
李蕾,郝永卯,王程伟,等. 页岩油藏单相流体低速渗流特征[J]. 特种油气藏,2021,28(6):70–75. doi: 10.3969/j.issn.1006-6535.2021.06.009
LI Lei, HAO Yongmao, WANG Chengwei, et al. Low-velocity seepage characteristics of single-phase fluid in shale reservoir[J]. Special Oil & Gas Reservoirs, 2021, 28(6): 70–75. doi: 10.3969/j.issn.1006-6535.2021.06.009
|
[26] |
DUNSMUIR J H, FERGUSON S R, D’AMICO K L, et al. X-ray microtomography: a new tool for the characterization of porous media[R]. SPE 22860, 1991.
|
[27] |
SCANZIANI A, SINGH K, BULTREYS T, et al. In situ characterization of immiscible three-phase flow at the pore scale for a water-wet carbonate rock[J]. Advances in Water Resources, 2018, 121: 446–455. doi: 10.1016/j.advwatres.2018.09.010
|
1. |
王彬,李琼玉,吕喜林,梁池,程晓伟,杨永朋. 无水改性乙二醇基速溶压裂液研制及应用. 油气井测试. 2024(05): 34-41 .
![]() | |
2. |
凃宏俊,周明,李彤彤. 自修复水凝胶的研究进展及油气田应用. 西南石油大学学报(自然科学版). 2023(01): 71-80 .
![]() | |
3. |
李源流,高兴军,侯浩,王延,弓虎军. 低碳烃无水压裂液体系构建及性能评价. 钻采工艺. 2023(01): 126-131 .
![]() | |
4. |
匡立新. 新型铝离子无水压裂液的制备及其性能. 石油地质与工程. 2022(01): 81-86 .
![]() | |
5. |
魏志毅,张金泽,公证,刘崧达,刘佳音,李家豪,范海明. 双烷基脲稠化烃基压裂液的制备及其流变特性. 中国石油大学学报(自然科学版). 2022(04): 123-129 .
![]() | |
6. |
蒋廷学,左罗,黄静. 少水压裂技术及展望. 石油钻探技术. 2020(05): 1-8 .
![]() | |
7. |
王满学,何静,王永炜. 国内烃基无水压裂液技术研究与应用进展. 钻井液与完井液. 2018(06): 1-7 .
![]() | |
8. |
刘晨,王凯,耿艳宏,王泰超,周文胜,邱凌. 清洁压裂液破胶液驱油体系实验研究. 断块油气田. 2017(01): 96-100 .
![]() | |
9. |
王满学,何静,王永炜. 耐高温低碳烃无水压裂液室内研究. 石油钻探技术. 2017(04): 93-96 .
![]() |