Citation: | YANG Chuanshu. Exploration for the Application of Digital Twin Technology in Drilling Engineering[J]. Petroleum Drilling Techniques, 2022, 50(3): 10-16. DOI: 10.11911/syztjs.2022068 |
Based on a brief introduction to the origin of digital twin technology and the research status of its applications in drilling engineering in the petroleum industry, some key technologies were advanced, including the development of digital twin of the wellbore, digital twin of the geological environment, digital twins of drilling rigs, the simulation of downhole dynamic processes, and the real-time interaction technology of physical-digital twins, etc. Then, six application scenarios were designed for the digital twin technology: namely pre-drilling prediction and optimization by simulation, rehearsal of teamwork for complex well drilling, early warning and decision-making while drilling, remote drilling control, predictive maintenance of drilling equipment, and drilling training. Further, the major research and development focuses were proposed regarding the digital twin system for drilling. Finally, the research and development difficulties of digital twin technology applied in drilling were analyzed together with corresponding countermeasures. The research results provide a technical reference for speeding up the practical applications of digital twin technology in drilling engineering and promoting the digital and intelligent transformation of drilling engineering.
[1] |
CEARLEY D W, BURKE B, SEARLE S, et al. Gartner top 10 strategic technology trends for 2018[EB/OL]. (2017−10−03) [2020−02−05].https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2018.
|
[2] |
GRIEVES M, VICKERS J. Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems (excerpt)[EB/OL]. [2020−01−29].https://www.researchgate.net/publication/307509727.
|
[3] |
GRIEVES M W. Virtually intelligent product systems: digital and physical twins[M]//FLUMERFELT S, SCHWARTZ K G, MAVRIS D, et al. Complex systems engineering: theory and practice. Reston: American Institute of Aeronautics and Astronautics, 2019: 175−200.
|
[4] |
MIKE SHAFTO C, CONROY M, DOYLE R, et al. Modeling, simulation, information technology and processing roadmap: technology area 11[R]. New York: NASA, 2010.
|
[5] |
DEUTER A, PETHIG F. The digital twin theory-a new view on a buzzword[EB/OL].(2019−03−18)[2020−02−05].https://www.researchgate.net/publication/330883447.
|
[6] |
李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001
LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
|
[7] |
柳海啸,刘芳,代文星,等. 基于大数据分析技术的钻井提效实践[J]. 石油钻采工艺,2021,43(4):436–441.
LIU Haixiao, LIU Fang, DAI Wenxing, et al. Drilling efficiency improvement practice based on big data analysis technology[J]. Oil Drilling & Production Technology, 2021, 43(4): 436–441.
|
[8] |
耿黎东. 大数据技术在石油工程中的应用现状与发展建议[J]. 石油钻探技术,2021,49(2):72–78. doi: 10.11911/syztjs.2020134
GENG Lidong. Application status and development suggestions of big data technology in petroleum engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72–78. doi: 10.11911/syztjs.2020134
|
[9] |
杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13. doi: 10.11911/syztjs.2020136
YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13. doi: 10.11911/syztjs.2020136
|
[10] |
OKHUIJSEN B, WADE K. Real-time production optimization-applying a digital twin model to optimize the entire upstream value chain[R]. SPE 197693, 2019.
|
[11] |
NADHAN D, MAYANI M G, ROMMETVEIT R. Drilling with digital twins[R]. SPE 191388, 2018.
|
[12] |
CAYEUX E, DAIREAUX B, DVERGSNES E W, et al. An early warning system for identifying drilling problems: an example from a problematic drill-out cement operation in the north-sea[R]. SPE 150942, 2012.
|
[13] |
Halliburton. Applying the O&G digital twin[R]. 2018: 1−3.
|
[14] |
Halliburton. Using an E&P digital twin in well construction[R]. 2017: 1−10.
|
[15] |
李中. 中国海油油气井工程数字化和智能化新进展与展望[J]. 石油钻探技术,2022,50(2):1–8. doi: 10.11911/syztjs.2021133
LI Zhong. Progress and prospects of digitization and intelligentization of CNOOC’s oil and gas well engineering[J]. Petroleum Drilling Techniques, 2022, 50(2): 1–8. doi: 10.11911/syztjs.2021133
|
[16] |
Energistics. WITSML developers & users[EB/OL]. [2020−02− 05]. https://www.energistics.org/witsml-developers-users/.
|
[17] |
檀朝东,黄新春,王松,等. 机理仿真与数据驱动融合的电泵举升故障诊断预警理论研究进展[J]. 石油钻采工艺,2021,43(4):483–488.
TAN Chaodong, HUANG Xinchun, WANG Song, et al. Research progress on fault diagnosis and early warning theory of electric submersible pump lifting based on mechanism simulation and data driven fusion[J]. Oil Drilling & Production Technology, 2021, 43(4): 483–488.
|
[18] |
黄小龙,刘东涛,宋吉明,等. 基于大数据及人工智能的钻速实时优化技术[J]. 石油钻采工艺,2021,43(4):442–448.
HUANG Xiaolong, LIU Dongtao, SONG Jiming, et al. Real-time ROP optimization technology based on big data and artificial intelligence[J]. Oil Drilling & Production Technology, 2021, 43(4): 442–448.
|
[19] |
王茜,张菲菲,李紫璇,等. 基于钻井模型与人工智能相耦合的实时智能钻井监测技术[J]. 石油钻采工艺,2020,42(1):6–15.
WANG Xi, ZHANG Feifei, LI Zixuan, et al. Real-time intelligent drilling monitoring technique based on the coupling of drilling model and artificial intelligence[J]. Oil Drilling & Production Technology, 2020, 42(1): 6–15.
|
[20] |
朱硕,宋先知,李根生,等. 钻柱摩阻扭矩智能实时分析与卡钻趋势预测[J]. 石油钻采工艺,2021,43(4):428–435.
ZHU Shuo, SONG Xianzhi, LI Gensheng, et al. Intelligent real-time drag and torque analysis and sticking trend prediction of drill string[J]. Oil Drilling & Production Technology, 2021, 43(4): 428–435.
|
[21] |
谭天一,张辉,马丹妮,等. 虑数据不平衡影响的钻井复杂智能诊断方法[J]. 石油钻采工艺,2021,43(4):449–454.
TAN Tianyi, ZHANG Hui, MA Danni, et al. An intelligent drilling accident diagnosis method considering the influence of data imbalance[J]. Oil Drilling & Production Technology, 2021, 43(4): 449–454.
|
1. |
黄少豪,王军平,王震宇,张卓,于贵健. 塔里木盆地宿探1井大井眼钻井提速技术探讨. 矿业装备. 2025(01): 7-10 .
![]() | |
2. |
史配铭,刘召友,荣芳,武宏超,米博超,念富龙. 超深探井荔参1井钻井关键技术. 石油工业技术监督. 2024(02): 50-55 .
![]() | |
3. |
蔡明杰,罗鑫,陈力力,贺明敏,彭浩,何兵. 万米深井SDCK1井超大尺寸井眼钻井技术. 石油钻探技术. 2024(02): 87-92 .
![]() | |
4. |
王鸿远. 预弯曲动力学防斜打快技术在塔里木盆地台前区应用研究. 当代化工研究. 2024(15): 111-113 .
![]() | |
5. |
王建宁,周英操,赵记臣,耿建华,乔建锋. 哈萨克斯坦KOA油田钻井减振提速技术研究. 石油机械. 2023(03): 56-60+67 .
![]() | |
6. |
丁红,万教育,徐广飞,张宏阜,李俊胜,易超,赵益书. 满深区块超深水平井轨迹控制与提速技术. 西部探矿工程. 2023(03): 60-63 .
![]() | |
7. |
李建军,陈先贵,于兴东. 一种新型聚合物降滤失剂在塔东超深井中的应用. 西部探矿工程. 2023(06): 51-54+59 .
![]() | |
8. |
徐鲲,陶林,李文龙,李林波,汤柏松,邸毅峰,王旭. 渤海油田变质岩潜山油藏钻井关键技术. 石油钻探技术. 2023(03): 16-21 .
![]() | |
9. |
马英文,杨进,李文龙,徐鲲,谢涛,杨保健. 渤中26-6油田发现井钻井设计与施工. 石油钻探技术. 2023(03): 9-15 .
![]() | |
10. |
熊浪豪,巢世伟,柏尚宇,陈君,范乘浪,崔建峰. E Zhanbyrshy-3井钻井实践及技术难点分析. 内蒙古石油化工. 2023(05): 63-66+120 .
![]() | |
11. |
路保平,陈会年. 《石油钻探技术》50年与未来发展建议. 石油钻探技术. 2023(04): 3-10 .
![]() | |
12. |
田辉,仇恒彬,董广华. 预弯曲钟摆钻具防斜打快技术在柯坪高陡构造地层的应用. 西部探矿工程. 2022(01): 39-43 .
![]() | |
13. |
宋先知,裴志君,王潘涛,张宫凌燕,叶山林. 基于支持向量机回归的机械钻速智能预测. 新疆石油天然气. 2022(01): 14-20 .
![]() | |
14. |
王文刚,胡大梁,欧彪,房舟,刘磊. 井研–犍为地区缝洞型复杂地层钻井关键技术. 石油钻探技术. 2022(02): 58-63 .
![]() | |
15. |
喻化民,薛莉,吴红玲,李海彪,冯丹,杨冀平,鲁娜. 满深区块深井强封堵钻井液技术. 钻井液与完井液. 2022(02): 171-179 .
![]() | |
16. |
朱金智,杨学文,刘洪涛,杨成新,张绍俊,罗春芝. 塔河南岸跃满区块三叠系防塌钻井液研究与应用. 钻井液与完井液. 2022(03): 319-326 .
![]() | |
17. |
赵向阳,赵聪,王鹏,梁晓阳,杨谋. 超深井井筒温度数值模型与解析模型计算精度对比研究. 石油钻探技术. 2022(04): 69-75 .
![]() | |
18. |
王建云,韩涛,赵宽心,张立军,席宝滨,叶翔. 塔深5井超深层钻井关键技术. 石油钻探技术. 2022(05): 27-33 .
![]() | |
19. |
王伟吉,高伟,范胜,宣扬,董晓强. 新型非磺化环保低摩阻钻井液. 钻井液与完井液. 2022(04): 459-465 .
![]() | |
20. |
潘冠昌,杨斌,张浩,常坤,冯云辉. 超深层碳酸盐岩裂缝面形态与摩擦因数研究. 断块油气田. 2022(06): 794-799 .
![]() | |
21. |
韩成福,张建卿,胡祖彪,王清臣,朱明明,王浩. 风险探井驿探1井钻井技术实践. 石油钻采工艺. 2022(06): 678-683 .
![]() | |
22. |
吴柏志,张怀兵. 满深1井碳酸盐岩地层自愈合水泥浆固井技术. 石油钻探技术. 2021(01): 67-73 .
![]() | |
23. |
钟汉毅,高鑫,邱正松,林永学,金军斌,汤志川,赵欣,李佳. 环保型β-环糊精聚合物微球高温降滤失作用机理. 石油学报. 2021(08): 1091-1102+1112 .
![]() | |
24. |
舒义勇,孙俊,曾东,徐思旭,周华安,席云飞. 塔里木油田跃满西区块高温恒流变钻井液研究与现场试验. 石油钻探技术. 2021(05): 39-45 .
![]() | |
25. |
王九龙,李翔,董宇,杨斌號. 塔里木盆地大北1401井目的层定向钻完井关键技术. 西部探矿工程. 2021(11): 58-60 .
![]() |