LI Zhong. Progress and Prospects of Digitization and Intelligentization of CNOOC’s Oil and Gas Well Engineering[J]. Petroleum Drilling Techniques, 2022, 50(2): 1-8. DOI: 10.11911/syztjs.2022061
Citation: LI Zhong. Progress and Prospects of Digitization and Intelligentization of CNOOC’s Oil and Gas Well Engineering[J]. Petroleum Drilling Techniques, 2022, 50(2): 1-8. DOI: 10.11911/syztjs.2022061

Progress and Prospects of Digitization and Intelligentization of CNOOC’s Oil and Gas Well Engineering

More Information
  • Received Date: February 24, 2022
  • Accepted Date: March 08, 2022
  • Available Online: March 13, 2022
  • The digitization and intelligentization of oil and gas well engineering are of great significance for increasing the productivity of oil and gas wells, reducing operation and drilling costs, as well as improving the health, safety, and environment (HSE) management level. During the Thirteenth Five-Year Plan period, CNOOC has completed its overall layout for the digitization and intelligentization of oil and gas well engineering through theoretical innovation and scientific research. As a result, preliminary achievements have been made in intelligentized operation, collaborative design, and refined management. This paper presents the achievements regarding the digitization and intelligentization of CNOOC’s oil and gas well engineering in detail, including eDrilling system, big data analysis system of drilling parameters, downhole drilling parameter measurement and short signal transmission system, early overflow monitoring system for deepwater drilling, downhole fiber optic monitoring system, drilling and completion integrated design platform, drilling and completion data submission system, information display system, and data analysis system, etc. To address information islands and the shortage of inter-disciplinary talents in intelligentization, the paper points out the necessity of adhering to the philosophy of "making them work for us instead of just being owned by us" while dealing with technologies in digitization, and actively seeks for deep strategic cooperation in the field of oil and gas well engineering with corporations specialized in advanced internet and intelligentization in China and other countries. In addition, it emphasizes independent innovation capabilities and bringing together "enterprises, universities, research institutes, and end-users" to promote the steady improvement of the research and application in regard to the digitization and intelligentization of CNOOC’s oil and gas well engineering so as to boost the high-quality development of the offshore oil industry in China.
  • [1]
    中国新闻网. 中国海上油气年产量突破6500万吨[EB/OL]. (2020 − 12 − 23)[2022 − 01 − 20].https://baijiahao.baidu.com/s?id= 1686855825559734753&wfr=spider&for=pc.

    China News Service. China’s annual output of offshore oil and gas exceeded 65 million tons[EB/OL]. (2020 − 12 − 23)[2020 − 01 − 20].https://baijiahao.baidu.com/s?id=1686855825559734753&wfr=spider&for=pc.
    [2]
    李中,谢仁军,吴怡,等. 中国海洋油气钻完井技术的进展与展望[J]. 天然气工业,2021,41(8):178–185. doi: 10.3787/j.issn.1000-0976.2021.08.016

    LI Zhong, XIE Renjun, WU Yi, et al. Progress and prospect of CNOOC’s oil and gas well drilling and completion technologies[J]. Natural Gas Industry, 2021, 41(8): 178–185. doi: 10.3787/j.issn.1000-0976.2021.08.016
    [3]
    赵纪东,郑军卫. 深水油气科技发展现状与趋势[J]. 天然气地球科学,2013,24(4):741–746.

    ZHAO Jidong, ZHENG Junwei. Development status and trends of science and technology of deepwater oil and gas[J]. Natural Gas Geoscience, 2013, 24(4): 741–746.
    [4]
    谢玉洪. 中国海洋石油总公司油气勘探新进展及展望[J]. 中国石油勘探,2018,23(1):26–35. doi: 10.3969/j.issn.1672-7703.2018.01.003

    XIE Yuhong. New progress and prospect of oil and gas exploration of China National Offshore Oil Corporation[J]. China Petroleum Exploration, 2018, 23(1): 26–35. doi: 10.3969/j.issn.1672-7703.2018.01.003
    [5]
    林闻,周金应. 世界深水油气勘探新进展与南海北部深水油气勘探[J]. 石油物探,2009,48(6):601–605. doi: 10.3969/j.issn.1000-1441.2009.06.011

    LIN Wen, ZHOU Jinying. Progress of deepwater hydrocarbon exploration worldwide and the exploration in the deepwater region of northern South China Sea[J]. Geophysical Prospecting for Petroleum, 2009, 48(6): 601–605. doi: 10.3969/j.issn.1000-1441.2009.06.011
    [6]
    白云程,周晓惠,万群,等. 世界深水油气勘探现状及面临的挑战[J]. 特种油气藏,2008,15(2):7–10. doi: 10.3969/j.issn.1006-6535.2008.02.002

    BAI Yuncheng, ZHOU Xiaohui, WAN Qun, et al. Deepwater oil and gas exploration status and challenges in the world[J]. Special Oil & Gas Reservoirs, 2008, 15(2): 7–10. doi: 10.3969/j.issn.1006-6535.2008.02.002
    [7]
    吕福亮,贺训云,武金云,等. 世界深水油气勘探现状、发展趋势及对我国深水勘探的启示[J]. 中国石油勘探,2007,12(6):28–31. doi: 10.3969/j.issn.1672-7703.2007.06.006

    LYU Fuliang, HE Xunyun, WU Jinyun, et al. Current situation and tendency of deepwater oil and gas exploration in the world[J]. China Petroleum Exploration, 2007, 12(6): 28–31. doi: 10.3969/j.issn.1672-7703.2007.06.006
    [8]
    林杨. 非数字原生企业数字化转型实践与认识:以中海石油智能油田建设示范项目为例[J]. 石油钻采工艺,2021,43(4):552–558.

    LIN Yang. Practice and understanding of digital transformation of non-digital original (traditional) enterprises: taking the construction of CNOOC intelligent oilfield demonstration project as an example[J]. Oil Drilling & Production Technology, 2021, 43(4): 552–558.
    [9]
    杨进,唐海雄,刘正礼,等. 深水油气井套管环空压力预测模型[J]. 石油勘探与开发,2013,40(5):616–619. doi: 10.11698/PED.2013.05.17

    YANG Jin, TANG Haixiong, LIU Zhengli, et al. Prediction model of casing annulus pressure for deepwater well drilling and completion operation[J]. Petroleum Exploration and Development, 2013, 40(5): 616–619. doi: 10.11698/PED.2013.05.17
    [10]
    谢静,吴惠梅,楼一珊,等. 南海深水海域高温高压地层破裂压力预测模型[J]. 断块油气田,2021,28(3):378–382.

    XIE Jing, WU Huimei, LOU Yishan, et al. Fracture pressure prediction model of high temperature and high pressure formation in deep water area of the South China Sea[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 378–382.
    [11]
    李清平. 我国海洋深水油气开发面临的挑战[J]. 中国海上油气,2006,18(2):130–133. doi: 10.3969/j.issn.1673-1506.2006.02.013

    LI Qingping. The situation and challenges for deepwater oil and gas exploration and exploitation in China[J]. China Offshore Oil and Gas, 2006, 18(2): 130–133. doi: 10.3969/j.issn.1673-1506.2006.02.013
    [12]
    孙宝江,张振楠. 南海深水钻井完井主要挑战与对策[J]. 石油钻探技术,2015,43(4):1–7.

    SUN Baojiang, ZHANG Zhennan. Challenges and countermeasures for the drilling and completion of deepwater wells in the South China Sea[J]. Petroleum Drilling Techniques, 2015, 43(4): 1–7.
    [13]
    姜伟. 中国海洋石油深水钻完井技术[J]. 石油钻采工艺,2015,37(1):1–4.

    JIANG Wei. Deepwater drilling and completion technology of China National Offshore Oil Corporation[J]. Oil Drilling & Production Technology, 2015, 37(1): 1–4.
    [14]
    王友华,王文海,蒋兴迅. 南海深水钻井作业面临的挑战和对策[J]. 石油钻探技术,2011,39(2):50–55. doi: 10.3969/j.issn.1001-0890.2011.02.009

    WANG Youhua, WANG Wenhai, JIANG Xingxun. South China Sea deepwater drilling challenges and solutions[J]. Petroleum Drilling Techniques, 2011, 39(2): 50–55. doi: 10.3969/j.issn.1001-0890.2011.02.009
    [15]
    孙宝江,曹式敬,李昊,等. 深水钻井技术装备现状及发展趋势[J]. 石油钻探技术,2011,39(2):8–15. doi: 10.3969/j.issn.1001-0890.2011.02.002

    SUN Baojiang, CAO Shijing, LI Hao, et al. Status and development trend of deepwater drilling technology and equipment[J]. Petroleum Drilling Techniques, 2011, 39(2): 8–15. doi: 10.3969/j.issn.1001-0890.2011.02.002
    [16]
    刘书杰,吴怡,谢仁军,等. 深水深层井钻井关键技术发展与展望[J]. 石油钻采工艺,2021,43(2):139–145.

    LIU Shujie, WU Yi, XIE Renjun, et al. Development and prospect of the key technologies for the drilling of deep wells in deep water[J]. Oil Drilling & Production Technology, 2021, 43(2): 139–145.
    [17]
    张功成, 米立军, 屈红军, 等. 中国海域深水区油气地质[J]. 石油学报, 2013, 34(增刊2): 1-14.

    ZHANG Gongcheng, MI Lijun, QU Hongjun, et al. Petroleum geology of deep-water areas in offshore China[J]. Acta Petrolei Sinica, 2013, 34(supplement 2): 1-14.
    [18]
    YUAN Junliang, ZHOU Jianliang, LIU Shujie, et al. An improved fracability-evaluation method for shale reservoirs based on new fracture toughness-prediction models[J]. SPE Journal, 2017, 22(5): 1704–1713. doi: 10.2118/185963-PA
    [19]
    陈建国,邓金根,袁俊亮,等. 页岩储层Ⅰ型和Ⅱ型断裂韧性评价方法研究[J]. 岩石力学与工程学报,2015,34(6):1101–1105.

    CHEN Jianguo, DENG Jingen, YUAN Junliang, et al. Determination of fracture toughness of modes I and II of shale formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(6): 1101–1105.
    [20]
    薛懿伟,陈立强,徐鲲,等. 渤中19-6大气田深部潜山硬地层钻井提速技术研究与应用[J]. 中国海上油气,2020,32(4):140–146.

    XUE Yiwei, CHEN Liqiang, XU Kun, et al. Research and application of ROP improvement technology in deep buried hill hard formations of BZ19-6 large gas field[J]. China Offshore Oil and Gas, 2020, 32(4): 140–146.
    [21]
    杨一凡,邱正松,李佳,等. 渤中19-6深部潜山高温气层保护钻井液技术[J]. 钻井液与完井液,2020,37(4):476–481. doi: 10.3969/j.issn.1001-5620.2020.04.012

    YANG Yifan, QIU Zhengsong, LI Jia, et al. Technology drilling fluid for protecting high temperature deep buried hill gas reservoirs in Bozhong 19-6 Block[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 476–481. doi: 10.3969/j.issn.1001-5620.2020.04.012
    [22]
    李中,谢仁军,袁俊亮. 深水高温高压气田窄压力窗口地层钻井安全概率区间[J]. 天然气工业,2020,40(12):88–94. doi: 10.3787/j.issn.1000-0976.2020.12.010

    LI Zhong, XIE Renjun, YUAN Junliang. Study on the drilling safety probability interval in narrow pressure window formation in deepwater HPHT gas fields[J]. Natural Gas Industry, 2020, 40(12): 88–94. doi: 10.3787/j.issn.1000-0976.2020.12.010
    [23]
    吴江,李炎军,张万栋,等. 南海莺歌海盆地中深层高温高压水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):63–69. doi: 10.11911/syztjs.2019112

    WU Jiang, LI Yanjun, ZHANG Wandong, et al. Key drilling techniques of HTHP horizontal wells in mid-deep strata of the Yinggehai Basin, South China Sea[J]. Petroleum Drilling Techniques, 2020, 48(2): 63–69. doi: 10.11911/syztjs.2019112
    [24]
    杨仲涵,罗鸣,陈江华,等. 莺歌海盆地超高温高压井挤水泥承压堵漏技术[J]. 石油钻探技术,2020,48(3):47–51. doi: 10.11911/syztjs.2020012

    YANG Zhonghan, LUO Ming, CHEN Jianghua, et al. Cement squeezing for pressure-bearing plugging in ultra-high temperature and high pressure wells in the Yinggehai Basin[J]. Petroleum Drilling Techniques, 2020, 48(3): 47–51. doi: 10.11911/syztjs.2020012
    [25]
    朱海山,李达. 陵水17-2气田 “深海一号” 能源站总体设计及关键技术研究[J]. 中国海上油气,2021,33(3):160–169.

    ZHU Haishan, LI Da. Research on overall design and key technologies of “Deep Sea No. 1” energy station in LS17-2 Gas Field[J]. China Offshore Oil and Gas, 2021, 33(3): 160–169.
    [26]
    孟瑄,于忠涛,袁洪水,等. 钻井实时辅助决策技术在大位移水平井中的应用[J]. 海洋石油,2018,38(4):76–83. doi: 10.3969/j.issn.1008-2336.2018.04.076

    MENG Xuan, YU Zhongtao, YUAN Hongshui, et al. Real-time drilling assistant decision technology applied in an extended-reach horizontal well[J]. Offshore Oil, 2018, 38(4): 76–83. doi: 10.3969/j.issn.1008-2336.2018.04.076
    [27]
    刘书杰,李相方,何英明,等. 海洋深水救援井钻井关键技术[J]. 石油钻采工艺,2015,37(3):15–18.

    LIU Shujie, LI Xiangfang, HE Yingming, et al. Key drilling technology for marine deepwater relief wells[J]. Oil Drilling & Production Technology, 2015, 37(3): 15–18.
    [28]
    李峰飞,蒋世全,周建良,等. 深水救援井井眼轨道设计探讨[J]. 石油钻探技术,2017,45(1):21–26.

    LI Fengfei, JIANG Shiquan, ZHOU Jianliang, et al. Discussion on the design of well trajectories in deepwater relief wells[J]. Petroleum Drilling Techniques, 2017, 45(1): 21–26.
    [29]
    周守为,李清平,朱海山,等. 海洋能源勘探开发技术现状与展望[J]. 中国工程科学,2016,18(2):19–31. doi: 10.3969/j.issn.1009-1742.2016.02.004

    ZHOU Shouwei, LI Qingping, ZHU Haishan, et al. The current state and future of offshore energy exploration and development technology[J]. Engineering Science, 2016, 18(2): 19–31. doi: 10.3969/j.issn.1009-1742.2016.02.004
    [30]
    廖高龙,郭书生,胡益涛,等. 地质工程一体化理念在南海高温高压井的实践[J]. 中国石油勘探,2020,25(2):142–154. doi: 10.3969/j.issn.1672-7703.2020.02.014

    LIAO Gaolong, GUO Shusheng, HU Yitao, et al. Practice of the geology-engineering integration concept in high temperature and high pressure wells in South China Sea[J]. China Petroleum Exploration, 2020, 25(2): 142–154. doi: 10.3969/j.issn.1672-7703.2020.02.014
    [31]
    李根生,宋先知,田守嶒. 智能钻井技术研究现状及发展趋势[J]. 石油钻探技术,2020,48(1):1–8. doi: 10.11911/syztjs.2020001

    LI Gensheng, SONG Xianzhi, TIAN Shouceng. Intelligent drilling technology research status and development trends[J]. Petroleum Drilling Techniques, 2020, 48(1): 1–8. doi: 10.11911/syztjs.2020001
    [32]
    杨传书,李昌盛,孙旭东,等. 人工智能钻井技术研究方法及其实践[J]. 石油钻探技术,2021,49(5):7–13. doi: 10.11911/syztjs.2020136

    YANG Chuanshu, LI Changsheng, SUN Xudong, et al. Research method and practice of artificial intelligence drilling technology[J]. Petroleum Drilling Techniques, 2021, 49(5): 7–13. doi: 10.11911/syztjs.2020136
  • Related Articles

    [1]FAN Baitao. Progress and Prospects of Deep Water and Offshore Deep Formation Drilling and Completion Technologies of CNOOC[J]. Petroleum Drilling Techniques. DOI: 10.11911/syztjs.2025051
    [2]QIN Yonghe. Progress and Development Strategies of Sliding and Rotary Steerable Drilling Technologies[J]. Petroleum Drilling Techniques, 2024, 52(6): 1-9. DOI: 10.11911/syztjs.2024105
    [3]LI Zhong. Progress and Prospect of Key Technologies for Drilling and Completion of “Deep Sea No.1” Gas Field of CNOOC[J]. Petroleum Drilling Techniques, 2023, 51(4): 88-94. DOI: 10.11911/syztjs.2023031
    [4]YUAN Jianqiang. New Progress and Development Proposals of Sinopec’s Drilling Technologies for Ultra-Long Horizontal Shale Gas Wells[J]. Petroleum Drilling Techniques, 2023, 51(4): 81-87. DOI: 10.11911/syztjs.2023030
    [5]ZENG Yijin. Novel Advancements and Development Suggestions of Cementing Technologies for Deep and Ultra-Deep Wells of Sinopec[J]. Petroleum Drilling Techniques, 2023, 51(4): 66-73. DOI: 10.11911/syztjs.2023035
    [6]LU Baoping, HOU Xutian, KE Ke. Achievements and Developing Suggestions of Sinopec’s Drilling Technologies in Arctic Sea[J]. Petroleum Drilling Techniques, 2021, 49(3): 1-10. DOI: 10.11911/syztjs.2021046
    [7]LU Baoping. New Progress and Development Proposals of Sinopec’s PetroleumEngineering Technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1-10. DOI: 10.11911/syztjs.2021001
    [8]DING Shidong, ZHAO Xiangyang. New Progress and Development Suggestions for Drilling and Completion Technologies in Sinopec Key Exploration Areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11-20. DOI: 10.11911/syztjs.2020069
    [9]MA Kaihua, HOU Lizhong, ZHANG Hongbao. Drilling Completion Technologies of Sinopec Overseas Oilfields: Status Quo of Technology Development Suggestions[J]. Petroleum Drilling Techniques, 2018, 46(5): 1-7. DOI: 10.11911/syztjs.2018128
    [10]LU Baoping, DING Shidong. New Progress and Development Prospect in Shale Gas Engineering Technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1-9. DOI: 10.11911/syztjs.2018001
  • Cited by

    Periodical cited type(11)

    1. 兰晓云,高峰,周强,任建强,王建锋,洪世杰. 四川盆地高密度钾聚磺水基钻井液酸性气体污染治理研究. 山西化工. 2024(05): 211-212+216 .
    2. 田文欣,俞浩杰. 页岩储层高性能环保型水基钻井液体系及其环境影响评价. 断块油气田. 2023(01): 38-43 .
    3. 李文涛. 四川页岩气井碳酸根/碳酸氢根污染问题的处理实践. 钻井液与完井液. 2022(01): 53-58 .
    4. 胡祖彪,张建卿,王清臣,孟凡金,侯博,张勤,屈艳平. 长庆致密气超长水平段水基钻井液技术. 钻井液与完井液. 2021(02): 183-188 .
    5. 谭天宇,邱爱民,汤继华,李浩,席佳男,霍丽芬. 吉兰泰油田吉华1区块超浅层水平井钻井关键技术. 石油钻探技术. 2021(06): 37-41 . 本站查看
    6. 任雯,刘晓辉,李盛林,王飞,仝坤,张明栋. 废弃高性能水基钻井液循环利用电吸附处理方法. 石油钻探技术. 2020(04): 50-55 . 本站查看
    7. 胡祖彪,张建卿,王清臣,吴付频,韩成福,柳伟荣. 长庆油田华H50-7井超长水平段钻井液技术. 石油钻探技术. 2020(04): 28-36 . 本站查看
    8. 甄剑武. 水平井高密度钻井液润滑减阻技术研究及现场试验. 石油钻探技术. 2020(05): 55-60 . 本站查看
    9. 祝学飞,孙俊,徐思旭,刘皓枫,査凌飞. HT2井三开水基钻井液CO_3~(2-)和HCO_3~-污染处理工艺. 钻井液与完井液. 2019(01): 36-40 .
    10. 初成. 高性能水基钻井液在油田致密油藏水平井中的应用研究. 西部探矿工程. 2019(05): 60+65 .
    11. 王建龙,齐昌利,柳鹤,陈鹏,汪鸿,郑永锋. 沧东凹陷致密油气藏水平井钻井关键技术. 石油钻探技术. 2019(05): 11-16 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1079) PDF downloads (314) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return