Citation: | LI Hong, YU Haiyang, YANG Haifeng, DENG Tong, LI Xu, WU Yang. Adaptive Stress Sensitivity Study of Fractured Heterogeneous Tight Reservoir[J]. Petroleum Drilling Techniques, 2022, 50(3): 99-105. DOI: 10.11911/syztjs.2022054 |
Fractured tight reservoirs are characterized by their strong heterogeneity and stress sensitivity. To understand with better clarity the influence of reservoir heterogeneity and fracture stress sensitivity on production, we employed the projection-based embedded discrete fracture model to characterize complex fractures. On this basis, a numerical stress sensitivity model considering matrix and multi-scale fracture heterogeneity was built by using the quantitative characterization model of stress sensitivity, and thus the stress sensitivity curve was obtained adaptively. The simulation results demonstrated that the stress sensitivity of the matrix could not be ignored in highly heterogeneous tight reservoirs because it had a great impact on production in the early stages, primarily with respect to hydraulic fractures. It was noted that the stress sensitivity of reservoirs decreased gradually as the production gradually transitioned from fractures to the matrix. Large differential production pressures in the early stages of production would cause a stress damage in the reservoir which was not conducive to long-term production. Moreover, the distribution pattern of multi-scale fractures with different filling degrees in reservoirs had a direct influence on productivity, as a less filled fracture in larger scale would provide higher productivity. The research results can provide a theoretical basis for rational production allocation and development scheme optimization of fractured tight reservoirs.
[1] |
王珂,戴俊生,张宏国,等. 裂缝性储层应力敏感性数值模拟:以库车坳陷克深气田为例[J]. 石油学报,2014,35(1):123–133. doi: 10.7623/syxb201401015
WANG Ke, DAI Junsheng, ZHANG Hongguo, et al. Numerical simulation of fractured reservoir stress sensitivity: a case from Kuqa Depression Keshen Gas Field[J]. Acta Petrolei Sinica, 2014, 35(1): 123–133. doi: 10.7623/syxb201401015
|
[2] |
刘礼军,姚军,孙海,等. 考虑启动压力梯度和应力敏感的页岩油井产能分析[J]. 石油钻探技术,2017,45(5):84–91.
LIU Lijun, YAO Jun, SUN Hai, et al. The effect of threshold pressure gradient and stress sensitivity on shale oil reservoir productivity[J]. Petroleum Drilling Techniques, 2017, 45(5): 84–91.
|
[3] |
赵国翔,姚约东,王链,等. 页岩油藏微尺度流动特征及应力敏感性分析[J]. 断块油气田,2021,28(2):247–252.
ZHAO Guoxiang, YAO Yuedong, WANG Lian, et al. Microscale transport behaviors of shale oil and stress sensitivity analysis[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 247–252.
|
[4] |
张鹏,吴通,李中,等. BP神经网络法预测顺北超深碳酸盐岩储层应力敏感程度[J]. 石油钻采工艺,2020,42(5):622–626.
ZHANG Peng, WU Tong, LI Zhong, et al. Application of BP neural network method to predict the stress sensitivity of ultra deep carbonate reservoir in Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(5): 622–626.
|
[5] |
孟勇,贾庆升,张潦源,等. 东营凹陷页岩油储层层间干扰及裂缝扩展规律研究[J]. 石油钻探技术,2021,49(4):130–138. doi: 10.11911/syztjs.2021094
MENG Yong, JIA Qingsheng, ZHANG Liaoyuan, et al. Research on interlayer interference and the fracture propagation law of shale oil reservoirs in the Dongying Sag[J]. Petroleum Drilling Techniques, 2021, 49(4): 130–138. doi: 10.11911/syztjs.2021094
|
[6] |
何利,肖阳,孙宜成,等. 车21井区裂缝性油藏地质建模与工程设计一体化研究[J]. 特种油气藏,2021,28(5):23–29. doi: 10.3969/j.issn.1006-6535.2021.05.004
HE Li, XIAO Yang, SUN Yicheng, et al. On integration of geological modeling and engineering design of fractured oil reservoirs in Well Block Che21[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 23–29. doi: 10.3969/j.issn.1006-6535.2021.05.004
|
[7] |
田鹤,曾联波,徐翔,等. 四川盆地涪陵地区海相页岩天然裂缝特征及对页岩气的影响[J]. 石油与天然气地质,2020,41(3):474–483. doi: 10.11743/ogg20200304
TIAN He, ZENG Lianbo, XU Xiang, et al. Characteristics of natural fractures in marine shale in Fuling Area, Sichuan Basin, and their influence on shale gas[J]. Oil & Gas Geology, 2020, 41(3): 474–483. doi: 10.11743/ogg20200304
|
[8] |
李江,陈先超,高平,等. 考虑应力敏感效应的裂缝性碳酸盐岩气井拟稳态产能预测方法[J]. 石油钻探技术,2021,49(3):111–116. doi: 10.11911/syztjs.2021032
LI Jiang, CHEN Xianchao, GAO Ping, et al. A pseudo-steady-state productivity prediction method for fractured carbonate gas wells considering stress-sensitivity effects[J]. Petroleum Drilling Techniques, 2021, 49(3): 111–116. doi: 10.11911/syztjs.2021032
|
[9] |
齐松超,于海洋,杨海烽,等. 致密砂岩逆向渗吸作用距离实验研究[J]. 力学学报,2021,53(9):2603–2611. doi: 10.6052/0459-1879-21-298
QI Songchao, YU Haiyang, YANG Haifeng, et al. Experimental research on quantification of countercurrent imbibition distance for tight sandstone[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(9): 2603–2611. doi: 10.6052/0459-1879-21-298
|
[10] |
李宪文,刘顺,陈强,等. 考虑复杂裂缝网络的致密油藏水平井体积压裂改造效果评价[J]. 石油钻探技术,2019,47(6):73–82. doi: 10.11911/syztjs.2019126
LI Xianwen, LIU Shun, CHEN Qiang, et al. An evaluation of the stimulation effect of horizontal well volumetric fracturing in tight reservoirs with complex fracture networks[J]. Petroleum Drilling Techniques, 2019, 47(6): 73–82. doi: 10.11911/syztjs.2019126
|
[11] |
TANG Meirong, WANG Chengwang, DENG Xian’an, et al. Experimental investigation on plugging performance of nanospheres in low-permeability reservoir with bottom water[J]. Advances in Geo-Energy Research, 2022, 6(2): 95–103. doi: 10.46690/ager.2022.02.02
|
[12] |
朱大伟,胡永乐,崔明月,等. 局部网格加密与嵌入式离散裂缝模型耦合预测压裂改造井产能[J]. 石油勘探与开发,2020,47(2):341–348. doi: 10.11698/PED.2020.02.12
ZHU Dawei, HU Yongle, CUI Mingyue, et al. Productivity simulation of hydraulically fractured wells based on hybrid local grid refinement and embedded discrete fracture model[J]. Petroleum Exploration and Development, 2020, 47(2): 341–348. doi: 10.11698/PED.2020.02.12
|
[13] |
MAHDI S, WANG Xingzhi, SHAH N. Interactions between the design and operation of shale gas networks, including CO2 sequestration[J]. Engineering, 2017, 3(2): 244–256. doi: 10.1016/J.ENG.2017.02.007
|
[14] |
张烈辉,刘沙,雍锐,等. 基于EDFM的致密油藏分段压裂水平井数值模拟[J]. 西南石油大学学报(自然科学版),2019,41(4):1–11.
ZHANG Liehui, LIU Sha, YONG Rui, et al. EDFM-based numerical simulation of horizontal wells with multi-stage hydraulic fracturing in tight reservoirs[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(4): 1–11.
|
[15] |
XU Yifei, YU Wei, SEPEHRNOORI K. Modeling dynamic behaviors of complex fractures in conventional reservoir simulators[J]. SPE Reservoir Evaluation & Engineering, 2019, 22(3): 1110–1130.
|
[16] |
WANG Bin, FIDELIBUS C. An open-source code for fluid flow simulations in unconventional fractured reservoirs[J]. Geosciences, 2021, 11(2): 106. doi: 10.3390/geosciences11020106
|
[17] |
GONG Lei, WANG Jie, GAO Shuai, et al. Characterization, controlling factors and evolution of fracture effectiveness in shale oil reservoirs[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108655. doi: 10.1016/j.petrol.2021.108655
|
[18] |
曾联波,吕鹏,屈雪峰,等. 致密低渗透储层多尺度裂缝及其形成地质条件[J]. 石油与天然气地质,2020,41(3):449–454. doi: 10.11743/ogg20200301
ZENG Lianbo, LYU Peng, QU Xuefeng, et al. Multi-scale fractures in tight sandstone reservoirs with low permeability and geological conditions of their development[J]. Oil & Gas Geology, 2020, 41(3): 449–454. doi: 10.11743/ogg20200301
|
[19] |
OLORODE O, WANG Bin, RASHID H U. Three-dimensional projection-based embedded discrete-fracture model for compositional simulation of fractured reservoirs[J]. SPE Journal, 2020, 25(4): 2143–2161. doi: 10.2118/201243-PA
|
[20] |
曹耐,雷刚. 致密储集层加压–卸压过程应力敏感性[J]. 石油勘探与开发,2019,46(1):132–138. doi: 10.11698/PED.2019.01.13
CAO Nai, LEI Gang. Stress sensitivity of tight reservoirs during pressure loading and unloading process[J]. Petroleum Exploration and Development, 2019, 46(1): 132–138. doi: 10.11698/PED.2019.01.13
|
[21] |
ŢENE M, BOSMA S B M, AL KOBAISI M S, et al. Projection-based embedded discrete fracture model (pEDFM)[J]. Advances in Water Resources, 2017, 105: 205–216. doi: 10.1016/j.advwatres.2017.05.009
|
[22] |
MOINFAR A, VARAVEI A, SEPEHRNOORI K, et al. Development of an efficient embedded discrete fracture model for 3D compositional reservoir simulation in fractured reservoirs[J]. SPE Jour-nal, 2014, 19(2): 289–303. doi: 10.2118/154246-PA
|
[23] |
LIE K A. An introduction to reservoir simulation using MATLAB/ GNU octave: user guide for the MATLAB reservoir simulation toolbox (MRST)[M]. Cambridge: Cambridge University Press, 2019.
|
[24] |
FADAKAR ALGHALANDIS Y. ADFNE: open source software for discrete fracture network engineering, two and three dimensional applications[J]. Computers & Geosciences, 2017, 102: 1–11.
|
[25] |
TIAN He, ZENG Lianbo, XU Xiang, et al. Factors influencing the in-situ stress orientations in shales: a case study of the Wufeng-Longmaxi formations in the Jiaoshiba area, southeastern Sichuan Basin, China[J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104110. doi: 10.1016/j.jngse.2021.104110
|
1. |
尹帅,金子一,刘程正,杨俊,茹晓飞,崔彩彩,寇冬琴,Sharifullah. 裂缝性储层天然缝与人工缝耦合机理及水窜预防井网调整. 成都理工大学学报(自然科学版). 2025(01): 18-30+43 .
![]() | |
2. |
李冬梅,李会会,朱苏阳. 大尺度离散裂缝的渗透率应力敏感研究——以顺北油田为例. 断块油气田. 2024(01): 147-153 .
![]() | |
3. |
姚军,王春起,黄朝琴,杨永飞,孙海,张磊. 深层超深层油气藏高应力下数字岩心构建方法. 石油钻探技术. 2024(02): 38-47 .
![]() | |
4. |
赵向阳. 固相颗粒对致密油气藏裂缝应力敏感性影响的试验研究. 石油钻探技术. 2024(03): 68-74 .
![]() | |
5. |
田山川,甘仁忠,肖琳,丁乙,魏瑞华,陈晓文,徐永华,梁利喜. 准噶尔盆地南缘异常高压泥岩段地层压力预测方法. 特种油气藏. 2024(05): 20-30 .
![]() | |
6. |
郭为,柳家正,张晓伟,滕柏路,康莉霞,高金亮,刘钰洋,罗万静. 考虑蠕变效应的页岩气水平井控压生产增产机理研究. 力学学报. 2023(03): 630-642 .
![]() | |
7. |
张栋梁,饶利平,蔡绪森,苏帅,沈传海,张维,姚征,王旭明. 长庆油田低渗储层微粒运移堵塞损害机理. 断块油气田. 2023(03): 441-447 .
![]() | |
8. |
孙鑫,刘礼军,侯树刚,戴彩丽,杜焕福,王春伟. 基于页岩油水两相渗流特性的油井产能模拟研究. 石油钻探技术. 2023(05): 167-172 .
![]() | |
9. |
钱钦,鲁明晶,钟安海. 东营凹陷陆相页岩油CO_2增能压裂裂缝形态研究. 石油钻探技术. 2023(05): 42-48 .
![]() | |
10. |
邓航,田巍. 储层条件下的应力敏感性研究. 断块油气田. 2023(06): 933-939 .
![]() | |
11. |
尹帅,刘翰林,何建华,王瑞飞,李香雪,黄郑,周永强,贺子潇. 动静态地质力学方法约束的致密油砂岩地应力综合评估. 地球科学进展. 2023(12): 1285-1296 .
![]() | |
12. |
俞天喜,王雷,陈蓓蓓,孙锡泽,李圣祥,朱振龙. 基于盐溶和蠕变作用的含盐储层裂缝导流能力变化规律研究与应用. 特种油气藏. 2023(06): 157-164 .
![]() |