ZHAO Xiangyang, ZHAO Cong, WANG Peng, et al. A comparative study on the calculation accuracy of numerical and analytical models for wellbore temperature in ultra-deep wells [J]. Petroleum Drilling Techniques,2022, 50(4):69-75. DOI: 10.11911/syztjs.2022035
Citation: ZHAO Xiangyang, ZHAO Cong, WANG Peng, et al. A comparative study on the calculation accuracy of numerical and analytical models for wellbore temperature in ultra-deep wells [J]. Petroleum Drilling Techniques,2022, 50(4):69-75. DOI: 10.11911/syztjs.2022035

A Comparative Study on the Calculation Accuracy of Numerical and Analytical Models for Wellbore Temperature in Ultra-Deep Wells

More Information
  • Received Date: July 11, 2021
  • Revised Date: April 05, 2022
  • Available Online: May 04, 2022
  • The accurate prediction of wellbore temperature during drilling is the key factor in the scientific evaluation of wellbore fluid flow safety and pressure control. Therefore, based on the principle of energy conservation between wellbore and formation in each area, the numerical and analytical models for wellbore-formation heat transfer were built. The fully implicit finite difference method and the analytical method were adopted to solve the mathematical models, respectively. Given the wellbore structure and drilling parameters of an ultra-deep well in Shunbei Oilfield, calculation accuracy of the above two models on the calculation results and the influencing factors were analyzed from the aspect of the heat transfer mechanism. The analysis showed that during drilling, the annular fluid temperature in the lower well section was lower than the original ground temperature, while the fluid temperature in the upper well section was higher than it. In the analytical model, a simplified dimensionless time function was used to represent the quasi-steady state heat exchange mode from distant formations to near well walls, and the comprehensive heat transfer coefficient was employed to characterize the total heat exchange between the formation and annulus, and between the annulus and the interior of the drill string. As a result, the wellbore-formation heat exchange was reduced, and thus the calculated fluid temperature in the annulus and drill string was lower than the result from numerical simulations. The results revealed that the calculated results of the heat transfer model were highly consistent with the downhole measurements, while the errors of the numerical solution and analytical solution were 1.46% and 6.94%, respectively, with a difference of 13.15 ℃. The research results provide a theoretical basis for an in-depth understanding of the wellbore-formation heat transfer mechanism and the accurate evaluation of the temperature field during drilling.

  • [1]
    袁国栋,王鸿远,陈宗琦,等. 塔里木盆地满深1井超深井钻井关键技术[J]. 石油钻探技术,2020,48(4):21–27. doi: 10.11911/syztjs.2020067

    YUAN Guodong, WANG Hongyuan, CHEN Zongqi, et al. Key drilling technologies for the ultra-deep Well Manshen 1 in the Tarim Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 21–27. doi: 10.11911/syztjs.2020067
    [2]
    李双贵,于洋,樊艳芳,等. 顺北油气田超深井井身结构优化设计[J]. 石油钻探技术,2020,48(2):6–11. doi: 10.11911/syztjs.2020002

    LI Shuanggui, YU Yang, FAN Yanfang, et al. Optimal design of casing programs for ultra-deep wells in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 6–11. doi: 10.11911/syztjs.2020002
    [3]
    苏雄,杨明合,陈伟峰,等. 顺北一区小井眼超深井井筒温度场特征研究与应用[J]. 石油钻探技术,2021,49(3):67–74. doi: 10.11911/syztjs.2021006

    SU Xiong, YANG Minghe, CHEN Weifeng, et al. Study and application of wellbore temperature field characteristics in the ultra-deep slim-hole wells in the Shunbei No. 1 Area[J]. Petroleum Drilling Techniques, 2021, 49(3): 67–74. doi: 10.11911/syztjs.2021006
    [4]
    付建红,苏昱,姜伟,等. 深层页岩气水平井井筒瞬态温度场研究与应用[J]. 西南石油大学学报(自然科学版),2019,41(6):165–173.

    FU Jianhong, SU Yu, JIANG Wei, et al. Research and application of wellbore transient temperature in deep shale gas horizontal wells[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(6): 165–173.
    [5]
    刘洋,艾正青,李早元,等. 注水泥循环温度影响因素探讨[J]. 西南石油大学学报(自然科学版),2012,34(1):154–158.

    LIU Yang, AI Zhengqing, LI Zaoyuan, et al. Discussion on the influence factors of cementing circulating temperature[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2012, 34(1): 154–158.
    [6]
    YANG Mou, LI Xiaoxiao, DENG Jianmin, et al. Prediction of wellbore and formation temperatures during circulation and shut-in stages under kick conditions[J]. Energy, 2015, 91: 1018–1029. doi: 10.1016/j.energy.2015.09.001
    [7]
    YANG Mou, ZHAO Xiangyang, MENG Yingfeng, et al. Determination of transient temperature distribution inside a wellbore considering drill string assembly and casing program[J]. Applied Thermal Engineering, 2017, 118: 299–314. doi: 10.1016/j.applthermaleng.2017.02.070
    [8]
    杨谋,孟英峰,李皋,等. 钻井全过程井筒–地层瞬态传热模型[J]. 石油学报,2013,34(2):366–371. doi: 10.7623/syxb201302021

    YANG Mou, MENG Yingfeng, LI Gao, et al. A transient heat transfer model of wellbore and formation during the whole drilling process[J]. Acta Petrolei Sinica, 2013, 34(2): 366–371. doi: 10.7623/syxb201302021
    [9]
    王雪瑞,孙宝江,刘书杰,等. 基于水化反应动力学的深水固井井筒温度与压力耦合预测模型[J]. 石油勘探与开发,2020,47(4):809–818. doi: 10.11698/PED.2020.04.18

    WANG Xuerui, SUN Baojiang, LIU Shujie, et al. A coupled model of temperature and pressure based on hydration kinetics during well cementing in deep water[J]. Petroleum Exploration and Development, 2020, 47(4): 809–818. doi: 10.11698/PED.2020.04.18
    [10]
    HASAN A R, KABIR C S. Aspects of wellbore heat transfer during two-phase flow[J]. SPE Production & Facilities, 1994, 9(3): 211–216.
    [11]
    KABIR C S, HASAN A R, KOUBA G E, et al. Determining circulating fluid temperature in drilling, workover, and well control operations[J]. SPE Drilling & Completion, 1996, 11(2): 74–79.
    [12]
    唐林,冯文伟,王林. 井内及井壁瞬态温度的确定[J]. 钻井液与完井液,1998,15(5):29–33.

    TANG Lin, FENG Wenwei, WANG Lin. Determining instantaneous state temperature in the borehole and the wall[J]. Drilling Fluid & Completion Fluid, 1998, 15(5): 29–33.
    [13]
    窦亮彬,李根生,沈忠厚,等. 注CO2井筒温度压力预测模型及影响因素研究[J]. 石油钻探技术,2013,41(1):76–81. doi: 10.3969/j.issn.1001-0890.2013.01.015

    DOU Liangbin, LI Gensheng, SHEN Zhonghou, et al. Wellbore pressure and temperature prediction model and its affecting factors for CO2 injection wells[J]. Petroleum Drilling Techniques, 2013, 41(1): 76–81. doi: 10.3969/j.issn.1001-0890.2013.01.015
    [14]
    NIAN Yongle, CHENG Wenlong. Evaluation of geothermal heating from abandoned oil wells[J]. Energy, 2018, 142: 592–607. doi: 10.1016/j.energy.2017.10.062
    [15]
    李勇,纪宏飞,邢鹏举,等. 气井井筒温度场及温度应力场的理论解[J]. 石油学报,2021,42(1):84–94. doi: 10.7623/syxb202101008

    LI Yong, JI Hongfei, XING Pengju, et al. Theoretical solutions of temperature field and thermal stress field in wellbore of a gas well[J]. Acta Petrolei Sinica, 2021, 42(1): 84–94. doi: 10.7623/syxb202101008
    [16]
    YANG Mou, YANG Lyuchao, WANG Tao, et al. Estimating formation leakage pressure using a coupled model of circulating temperature-pressure in an eccentric annulus[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106918. doi: 10.1016/j.petrol.2020.106918
    [17]
    张更,李军,柳贡慧,等. 考虑钻井液流动阻力与钻柱旋转的井筒瞬态传热新模型[J]. 断块油气田,2021,28(1):133–138.

    ZHANG Geng, LI Jun, LIU Gonghui, et al. Transient wellbore heat transfer new model considering drilling fluid flow resistance and drillstring rotation[J]. Fault-Block Oil & Gas Field, 2021, 28(1): 133–138.
    [18]
    张锐尧,李军,柳贡慧,等. 深水钻井多压力系统条件下的井筒温度场研究[J]. 石油机械,2021,49(7):77–85. doi: 10.16082/j.cnki.issn.1001-4578.2021.07.011

    ZHANG Ruiyao, LI Jun, LIU Gonghui, et al. Research on the wellbore temperature field under the multiple pressure system during deep water drilling[J]. China Petroleum Machinery, 2021, 49(7): 77–85. doi: 10.16082/j.cnki.issn.1001-4578.2021.07.011
    [19]
    董胜伟,王子健,曹 飞,等. 深水浅部水合物储层水平井井筒温度计算模型[J]. 特种油气藏,2020,27(5):157–161.

    DONG Shengwei, WANG Zijian, CAO Fei,et al. Wellbore temperature calculation model for horizontal wells in shallow hydrate reservoirs in deep water[J]. Special Oil & Gas Reservoirs, 2020, 27(5): 157–161.
    [20]
    杨顺辉,豆宁辉,赵向阳,等. 多层合采智能井井筒温度场预测模型及应用[J]. 石油钻探技术,2019,47(4):83–91.

    YANG Shunhui, DOU Ninghui, ZHAO Xiangyang, et al. Temperature field prediction model for multi-layer commingled production wellbore in intelligent wells and it’s application[J]. Petroleum Dril-ling Techniques, 2019, 47(4): 83–91.
    [21]
    YANG Mou, LUO Dayu, CHEN Yuanhang, et al. Establishing a practical method to accurately determine and manage wellbore thermal behavior in high-temperature drilling[J]. Applied Energy, 2019, 238: 1471–1483. doi: 10.1016/j.apenergy.2019.01.164
  • Cited by

    Periodical cited type(12)

    1. 尹帅,金子一,刘程正,杨俊,茹晓飞,崔彩彩,寇冬琴,Sharifullah. 裂缝性储层天然缝与人工缝耦合机理及水窜预防井网调整. 成都理工大学学报(自然科学版). 2025(01): 18-30+43 .
    2. 李冬梅,李会会,朱苏阳. 大尺度离散裂缝的渗透率应力敏感研究——以顺北油田为例. 断块油气田. 2024(01): 147-153 .
    3. 姚军,王春起,黄朝琴,杨永飞,孙海,张磊. 深层超深层油气藏高应力下数字岩心构建方法. 石油钻探技术. 2024(02): 38-47 . 本站查看
    4. 赵向阳. 固相颗粒对致密油气藏裂缝应力敏感性影响的试验研究. 石油钻探技术. 2024(03): 68-74 . 本站查看
    5. 田山川,甘仁忠,肖琳,丁乙,魏瑞华,陈晓文,徐永华,梁利喜. 准噶尔盆地南缘异常高压泥岩段地层压力预测方法. 特种油气藏. 2024(05): 20-30 .
    6. 郭为,柳家正,张晓伟,滕柏路,康莉霞,高金亮,刘钰洋,罗万静. 考虑蠕变效应的页岩气水平井控压生产增产机理研究. 力学学报. 2023(03): 630-642 .
    7. 张栋梁,饶利平,蔡绪森,苏帅,沈传海,张维,姚征,王旭明. 长庆油田低渗储层微粒运移堵塞损害机理. 断块油气田. 2023(03): 441-447 .
    8. 孙鑫,刘礼军,侯树刚,戴彩丽,杜焕福,王春伟. 基于页岩油水两相渗流特性的油井产能模拟研究. 石油钻探技术. 2023(05): 167-172 . 本站查看
    9. 钱钦,鲁明晶,钟安海. 东营凹陷陆相页岩油CO_2增能压裂裂缝形态研究. 石油钻探技术. 2023(05): 42-48 . 本站查看
    10. 邓航,田巍. 储层条件下的应力敏感性研究. 断块油气田. 2023(06): 933-939 .
    11. 尹帅,刘翰林,何建华,王瑞飞,李香雪,黄郑,周永强,贺子潇. 动静态地质力学方法约束的致密油砂岩地应力综合评估. 地球科学进展. 2023(12): 1285-1296 .
    12. 俞天喜,王雷,陈蓓蓓,孙锡泽,李圣祥,朱振龙. 基于盐溶和蠕变作用的含盐储层裂缝导流能力变化规律研究与应用. 特种油气藏. 2023(06): 157-164 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (404) PDF downloads (74) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return