TANG Longhao, WANG Yanling, ZHANG Chuanbao, et al. Preparation and evaluation of thermosensitive plugging materials based on shape memory polymers [J]. Petroleum Drilling Techniques,2022, 50(5):70-75. DOI: 10.11911/syztjs.2022023
Citation: TANG Longhao, WANG Yanling, ZHANG Chuanbao, et al. Preparation and evaluation of thermosensitive plugging materials based on shape memory polymers [J]. Petroleum Drilling Techniques,2022, 50(5):70-75. DOI: 10.11911/syztjs.2022023

Preparation and Evaluation of Thermosensitive Plugging MaterialsBased on Shape Memory Polymers

More Information
  • Received Date: November 10, 2021
  • Revised Date: June 08, 2022
  • Available Online: November 03, 2022
  • Considering the insufficient ability of traditional plugging materials to seal fractured leakage, shape memory polymers (SMPs) were introduced for plugging. A thermosensitive plugging material was prepared based on SMPs for their “temperature-controlled deformation” property. Then, its glass transition temperature and shape memory performance were evaluated by the thermo-mechanical dynamic analyzer and shape recovery test. Moreover, the simulation tests of fracture plugging were carried out to assess the plugging capability of the polymers on fractures and explore the plugging mechanism. The research results indicated that the deformation temperature(glass transition temperature) of the thermosensitive plugging material could be regulated in the range of 80–120 ℃ according to the locations of the leakage layers, featuring excellent shape memorizing performance (with a shape recovery ratio of more than 95%). In addition, the temperature resistance of this material was good, with the initial pyrolysis temperature between 230 and 258 ℃, which meant that the material could be applied in a formation temperature environment of 80–120 ℃. The compound of this material and the traditional plugging material could successfully seal the fractures with width ranging from 3–5 mm. The research results can provide a reference for the preparation and application of this new material to fracture plugging.

  • [1]
    张希文,李爽,张洁,等. 钻井液堵漏材料及防漏堵漏技术研究进展[J]. 钻井液与完井液,2009,26(6):74–76. doi: 10.3969/j.issn.1001-5620.2009.06.022

    ZHANG Xiwen, LI Shuang, ZHANG Jie, et al. Research progress on lost circulation materials and lost circulation control techno-logy[J]. Drilling Fluid & Completion Fluid, 2009, 26(6): 74–76. doi: 10.3969/j.issn.1001-5620.2009.06.022
    [2]
    程鹏至,易偲文,梅林德,等. 新型堵漏材料的研制及性能评价[J]. 钻井液与完井液,2016,33(3):51–55. doi: 10.3969/j.issn.1001-5620.2016.03.010

    CHENG Pengzhi, YI Caiwen, MEI Linde, et al. The development and evaluation of a set of new lost circulation material[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 51–55. doi: 10.3969/j.issn.1001-5620.2016.03.010
    [3]
    何龙,史堃,杨健,等. 裂缝性地层堵漏材料承压性能及材料优选研究[J]. 钻采工艺,2019,42(2):42–44. doi: 10.3969/J.ISSN.1006-768X.2019.02.12

    HE Long, SHI Kun, YANG Jian, et al. Study on pressure-bearing property and material optimum selection of leakage-plugging materials for fractured formation[J]. Drilling & Production Technology, 2019, 42(2): 42–44. doi: 10.3969/J.ISSN.1006-768X.2019.02.12
    [4]
    黄贤杰,董耘. 高效失水堵漏剂在塔河油田二叠系的应用[J]. 西南石油大学学报(自然科学版),2008,30(4):159–162.

    HUANG Xianjie, DONG Yun. The application of the highly effective lost circulation additive in the Permian in Tahe Oilfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30(4): 159–162.
    [5]
    张歧安,徐先国,董维,等. 延迟膨胀颗粒堵漏剂的研究与应用[J]. 钻井液与完井液,2006,23(2):21–24. doi: 10.3969/j.issn.1001-5620.2006.02.007

    ZHANG Qi’an, XU Xianguo, DONG Wei, et al. Study and application of granular postponed-swelling LCM[J]. Drilling Fluid & Completion Fluid, 2006, 23(2): 21–24. doi: 10.3969/j.issn.1001-5620.2006.02.007
    [6]
    蒋建军,胡毅,陈星,等. 形状记忆智能复合材料的发展与应用[J]. 材料工程,2018,46(8):1–13. doi: 10.11868/j.issn.1001-4381.2018.000344

    JIANG Jianjun, HU Yi, CHEN Xing, et al. Development and application of shape memory intelligent composites[J]. Journal of Materials Engineering, 2018, 46(8): 1–13. doi: 10.11868/j.issn.1001-4381.2018.000344
    [7]
    王垚, 李春福, 林元华, 等. SMA在石油工程中的应用研究进展[J]. 材料导报, 2016, 30(增刊2): 98−102.

    WANG Yao, LI Chunfu, LIN Yuanhua, et al. Research progress of application of SMA in petroleum engineering[J]. Materials Reports, 2016, 30(supplement 2): 98−102.
    [8]
    段友智,侯倩,刘锦春,等. 完井用多孔隙形状记忆聚合物的性能影响因素研究[J]. 石油钻探技术,2021,49(2):67–71. doi: 10.11911/syztjs.2020100

    DUAN Youzhi, HOU Qian, LIU Jinchun, et al. Study on the influencing factors of the properties of porous shape memory polymer for well completion[J]. Petroleum Drilling Techniques, 2021, 49(2): 67–71. doi: 10.11911/syztjs.2020100
    [9]
    KUMAR K S S, NAIR C P R. Hydrophobic shape memory poly (oxazolidone-triazine) cyclomatrix networks with high transition temperatures[J]. RSC Advances, 2014, 4(6): 2969–2973. doi: 10.1039/C3RA44934C
    [10]
    PARAMESWARANPILLAI J, RAMANAN S P, JOSE S, et al. Shape memory properties of epoxy/PPO-PEO-PPO triblock copolymer blends with tunable thermal transitions and mechanical characteristics[J]. Industrial & Engineering Chemistry Research, 2017, 56(47): 14069–14077.
    [11]
    汤龙皓,王彦玲,李永飞,等. 热致型形状记忆聚合物的研究现状与应用进展[J]. 机械工程材料,2019,43(9):1–7. doi: 10.11973/jxgccl201909001

    TANG Longhao, WANG Yanling, LI Yongfei, et al. Research status and application progress of thermal-induced shape memory polymer[J]. Materials for Mechanical Engineering, 2019, 43(9): 1–7. doi: 10.11973/jxgccl201909001
    [12]
    段友智,刘欢乐,艾爽,等. 形状记忆筛管膨胀性能测试[J]. 石油钻探技术,2020,48(4):83–88. doi: 10.11911/syztjs.2020038

    DUAN Youzhi, LIU Huanle, AI Shuang, et al. Test of the expansion performance for shape memory screens[J]. Petroleum Drilling Techniques, 2020, 48(4): 83–88. doi: 10.11911/syztjs.2020038
    [13]
    暴丹,邱正松,叶链,等. 热致形状记忆“智能”型堵漏剂的制备与特性实验[J]. 石油学报,2020,41(1):106–115. doi: 10.7623/syxb202001010

    BAO Dan, QIU Zhengsong, YE Lian, et al. Preparation and characteristic experiments of intelligent lost circulation materials based on thermally shape memory polymer[J]. Acta Petrolei Sinica, 2020, 41(1): 106–115. doi: 10.7623/syxb202001010
    [14]
    潘一,徐明磊,郭奇,等. 钻井液智能堵漏材料研究进展[J]. 材料导报,2021,35(9):9223–9230. doi: 10.11896/cldb.20030053

    PAN Yi, XU Minglei, GUO Qi, et al. Research progress of smart plugging materials for drilling fluid[J]. Materials Reports, 2021, 35(9): 9223–9230. doi: 10.11896/cldb.20030053
    [15]
    王照辉,崔凯潇,蒋官澄,等. 基于形状记忆环氧树脂聚合物的温敏可膨胀型堵漏剂研制及性能评价[J]. 钻井液与完井液,2020,37(4):412–420. doi: 10.3969/j.issn.1001-5620.2020.04.002

    WANG Zhaohui, CUI Kaixiao, JIANG Guancheng,et al. Development and evaluation of a temperature-sensitive expandable lost circulation material made from a shape memory epoxy polymer[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 412–420. doi: 10.3969/j.issn.1001-5620.2020.04.002
    [16]
    刘学鹏. 温敏堵漏水泥浆体系研究与应用[J]. 钻探工程,2022,49(2):110–116.

    LIU Xuepeng. Research and application of the temperature sensitive plugging cement slurry system[J]. Drilling Engineering, 2022, 49(2): 110–116.
    [17]
    王宝田,杨倩云,杨华. 形状记忆聚合物型温控膨胀堵漏剂SDP制备技术[J]. 钻井液与完井液,2022,39(1):41–45.

    WANG Baotian, YANG Qianyun, YANG Hua. Research on preparation technology of temperature-controlled expansion plugging agent based on shape memory polymer[J]. Drilling Fluid & Completion Fluid, 2022, 39(1): 41–45.
    [18]
    KAUR J, SAXENA M, RISHI N. An overview of recent advances in biomedical applications of click chemistry[J]. Bioconjugate Chemistry, 2021, 32(8): 1455–1471. doi: 10.1021/acs.bioconjchem.1c00247
  • Cited by

    Periodical cited type(4)

    1. 张萌. 测井信息融合下的地层精准评价模型构建与实践. 信息系统工程. 2025(02): 12-15 .
    2. 臧晓宇,邱正松,郭鹏飞,钟汉毅,赵欣. 微胶囊型堵漏剂的制备及裂缝封堵层强化效果研究. 应用化工. 2025(02): 277-281 .
    3. 罗俊如,丁言瑞,徐明华,胡超,刘炳官,孔维军,马强维,石林. 基于深度AUC最大化算法的井漏风险预测(英文). 常州大学学报(自然科学版). 2024(03): 34-44 .
    4. 孙伟峰,冯剑寒,张德志,李威桦,刘凯,戴永寿. 结合LSTM自编码器与集成学习的井漏智能识别方法. 石油钻探技术. 2024(03): 61-67 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (229) PDF downloads (47) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return