WEI Liao. Development and Performance Evaluation of a Graphene ReinforcedAluminum-Based Soluble Ball Seat[J]. Petroleum Drilling Techniques, 2022, 50(2): 113-117. DOI: 10.11911/syztjs.2021134
Citation: WEI Liao. Development and Performance Evaluation of a Graphene ReinforcedAluminum-Based Soluble Ball Seat[J]. Petroleum Drilling Techniques, 2022, 50(2): 113-117. DOI: 10.11911/syztjs.2021134

Development and Performance Evaluation of a Graphene ReinforcedAluminum-Based Soluble Ball Seat

More Information
  • Received Date: December 02, 2020
  • Revised Date: November 24, 2021
  • Available Online: December 26, 2021
  • The re-entry of tools in horizontal wells can be negativelly affected by problems in removing the ball seat in multistage ball-drop sliding sleeves such as low drilling efficiency and incomplete removal. In order to overcome that, a graphene reinforced aluminum-based composite was developed to make soluble ball seat with sliding sleeve. By using graphene and silicon carbide ceramic particles and with powder metallurgy, a graphene reinforced aluminum-based composite was obtained. The composite possess characteristics of high strength, high hardness and self- rapid dissolution in saline environment, with yield strength of 469 MPa and surface hardness up to 170 HBW. The soluble ball seat made of graphene-reinforced aluminum-based composite could still maintain sealing and pressure-bearing capacity when eroded by sand-containing fracturing fluid with a sand ratio of 30% at a flow rate of 4 m3/min for 26 hrs, and its overall weight was only reduced by 2.1%. In addition, the ball seat could completely be dissolved in the 4% KCl solution at 90 ℃ when soaked in the solution for 32.5 hrs. The field test showed that the developed graphene reinforced aluminum-based soluble ball seat could satisfy the requirements of multistage sliding sleeve fracturing with high flow rate, high sand ratio and long operation time. After fracturing, the ball seat can dissolve by itself in downhole liquid environment to achieve a full-diameter borehole. The developed graphene reinforced aluminum-based soluble ball seat can provide clean and safe wellbore conditions for the second stimulation of the reservoir.
  • [1]
    赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075

    ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075
    [2]
    张红杰,刘欣佳,张潇,等. 煤系储层综合开发中的压裂射孔方案优化研究[J]. 特种油气藏,2021,28(1):154–160.

    ZHANG Hongjie, LIU Xinjia, ZHANG Xiao, et al. Study on the optimization of the fracturing perforation scheme in the comprehensive development of coal-bearing reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 154–160.
    [3]
    任国富,赵粉霞,冯长青,等. 套管球座压裂工具研制与试验[J]. 钻采工艺,2017,40(5):76–77,80. doi: 10.3969/J.ISSN.1006-768X.2017.05.23

    REN Guofu, ZHAO Fenxia, FENG Changqing, et al. Development and trial of casing ball-seat fracturing tool[J]. Drilling & Production Technology, 2017, 40(5): 76–77,80. doi: 10.3969/J.ISSN.1006-768X.2017.05.23
    [4]
    杨同玉,魏辽,李强,等. 全自溶分段压裂滑套的研制与应用[J]. 特种油气藏,2019,26(3):153–157. doi: 10.3969/j.issn.1006-6535.2019.03.029

    YANG Tongyu, WEI Liao, LI Qiang, et al. Development and application of fully auto-soluble multi-stage fracturing sliding sleeve[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 153–157. doi: 10.3969/j.issn.1006-6535.2019.03.029
    [5]
    刘恩洋,于思荣,纪志康,等. 漂珠/镁合金复合材料可溶压裂球的制备及组织性能研究[J]. 稀有金属,2019,43(8):792–799.

    LIU Enyang, YU Sirong, JI Zhikang, et al. Preparation, microstructure and properties of fly ash cenosphere/Mg alloy composites for degradable fracturing ball applications[J]. Chinese Journal of Rare Metals, 2019, 43(8): 792–799.
    [6]
    郭鸣,詹鸿运,冯强,等. 高强度可溶桥塞结构设计与应用[J]. 石油钻采工艺,2020,42(1):52–55,61.

    GUO Ming, ZHAN Hongyun, FENG Qiang, et al. Design and application of high-strength dissolvable bridge plug[J]. Oil Drilling & Production Technology, 2020, 42(1): 52–55,61.
    [7]
    安杰,唐梅荣,张矿生,等. 致密油水平井全可溶桥塞体积压裂技术评价与应用[J]. 特种油气藏,2019,26(5):159–163. doi: 10.3969/j.issn.1006-6535.2019.05.027

    AN Jie, TANG Meirong, ZHANG Kuangsheng, et al. Evaluation and application of volume fracturing with full-soluble plug in tight oil horizontal well[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 159–163. doi: 10.3969/j.issn.1006-6535.2019.05.027
    [8]
    钟森,谭明文,赵祚培,等. 永川深层页岩气藏水平井体积压裂技术[J]. 石油钻采工艺,2019,41(4):529–533.

    ZHONG Sen, TAN Mingwen, ZHAO Zuopei, et al. Volume fracturing for horizontal wells in Yongchuan deep shale gas reservoirs[J]. Oil Drilling & Production Technology, 2019, 41(4): 529–533.
    [9]
    钟林,冯桂弘,朱和明,等. 压裂球座结构优化分析及耐冲蚀研究[J]. 表面技术,2021,50(6):213–219,228.

    ZHONG Lin, FENG Guihong, ZHU Heming, et al. Structural optimization analysis and erosion resistance study of frac ball seat[J]. Surface Technology, 2021, 50(6): 213–219,228.
    [10]
    邹高鹏,贺显聪,孙滨洲,等. 微纳石墨烯片增强铝合金的力学性能及其机理[J]. 中国有色金属学报,2017,27(11):2228–2235.

    ZOU Gaopeng, HE Xiancong, SUN Binzhou, et al. Mechanics performances and mechanism of aluminum alloy reinforced by graphene nanosheets[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(11): 2228–2235.
    [11]
    赵乃勤,刘兴海,蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报,2019,55(1):1–15. doi: 10.11900/0412.1961.2018.00456

    ZHAO Naiqin, LIU Xinghai, PU Bowen. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: a review[J]. Acta Metallurgica Sinica, 2019, 55(1): 1–15. doi: 10.11900/0412.1961.2018.00456
  • Related Articles

    [1]CHI Jiangong. Drilling Technologies for Horizontal Wells of Gulong Shale Oil in Daqing[J]. Petroleum Drilling Techniques, 2023, 51(6): 12-17. DOI: 10.11911/syztjs.2023002
    [2]GE Luo. Experimental Study on the Migration and Adsorption of Gel Profile Control Agent in Medium-Permeability Sandstone in the Sabei Block of Daqing Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(3): 119-125. DOI: 10.11911/syztjs.2023063
    [3]WANG Qing, ZHANG Jiawei, SUN Minghao, JI Guodong, WANG Haige, SUN Xiaofeng. The Settlement Drag Coefficient of Gulong Shale Cuttings in Power-Law Fluids in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(2): 54-60. DOI: 10.11911/syztjs.2023006
    [4]LI Yuhai, LI Bo, LIU Changpeng, ZHENG Ruiqiang, LI Xiangyong, JI Bo. ROP Improvement Technology for Horizontal Shale Oil Wells in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(5): 9-13. DOI: 10.11911/syztjs.2021085
    [5]LIU Yonggui. Optimization and Application of High Performance Water-Based Drilling Fluid for Horizontal Wells in Daqing Tight Oil Reservoir[J]. Petroleum Drilling Techniques, 2018, 46(5): 35-39. DOI: 10.11911/syztjs.2018090
    [6]YANG Zhiguang. The Latest Proposals for the Advancement and Development of Drilling and Completion Technology in the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 1-10. DOI: 10.11911/syztjs.201606001
    [7]Ai Chi, Hu Chaoyang, Cui Yueming. Casing Optimization for Delaying Casing Damage in the Datum Bed of the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(6): 7-12. DOI: 10.11911/syztjs.201506002
    [8]Hou Jie, Liu Yonggui, Li Hai. Application of High-Performance Water-Based Drilling Fluid for Horizontal Wells in Tight Reservoirs of Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(4): 59-65. DOI: 10.11911/syztjs.201504011
    [9]Chen Shaoyun, Li Aihui, Li Ruiying, Wang Chu, Liu Jinwei. Horizontal Well Drilling Technology in Shallow Heavy Oil Recovery in Block Puqian 12 of the Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(1): 126-130. DOI: 10.11911/syztjs.201501022
    [10]Yang Juesuan. Matching Technology and Application of Gas Drilling in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2012, 40(6): 47-50. DOI: 10.3969/j.issn.1001-0890.2012.06.010
  • Cited by

    Periodical cited type(9)

    1. 郭旭升,胡德高,舒志国,李宇平,郑爱维,魏祥峰,倪凯,赵培荣. 重庆涪陵国家级页岩气示范区勘探开发建设进展与展望. 天然气工业. 2022(08): 14-23 .
    2. 夏海帮,包凯,李成龙. 南川页岩气田绿色开发技术优化与实践. 石油钻采工艺. 2021(01): 54-58 .
    3. 梅绪东,金吉中,王丹,熊德明,张思兰. 涪陵页岩气开发环境管理的探索与实践. 环境影响评价. 2020(03): 27-30 .
    4. 徐斌. 宜昌地区五峰-龙马溪组页岩气水平井钻井复杂情况地质原因分析. 江汉石油职工大学学报. 2020(03): 47-49 .
    5. 任雯,刘晓辉,李盛林,王飞,仝坤,张明栋. 废弃高性能水基钻井液循环利用电吸附处理方法. 石油钻探技术. 2020(04): 50-55 . 本站查看
    6. 谭浩. 我国页岩气开发重点产建区地下水环境保护措施简介. 中国资源综合利用. 2019(03): 121-123 .
    7. 夏海帮,包凯,王玉海,周成香,杨玉坤. 涪陵页岩气田平桥南区块钻井岩屑综合利用技术. 石油钻探技术. 2019(02): 63-67 . 本站查看
    8. 韩来聚,李公让. 胜利油田钻井环保技术进展及发展方向. 石油钻探技术. 2019(03): 89-94 . 本站查看
    9. 凡帆,杨斌,吴满祥. 页岩气油基钻屑萃取处理技术. 钻井液与完井液. 2018(05): 78-82 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (334) PDF downloads (64) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return