WANG Ping, SHEN Haichao. High-Efficient Development Technologies for the M Tight Sandstone Gas Reservoir in Canada[J]. Petroleum Drilling Techniques, 2022, 50(1): 97-102. DOI: 10.11911/syztjs.2021123
Citation: WANG Ping, SHEN Haichao. High-Efficient Development Technologies for the M Tight Sandstone Gas Reservoir in Canada[J]. Petroleum Drilling Techniques, 2022, 50(1): 97-102. DOI: 10.11911/syztjs.2021123

High-Efficient Development Technologies for the M Tight Sandstone Gas Reservoir in Canada

More Information
  • Received Date: January 11, 2021
  • Revised Date: October 22, 2021
  • Available Online: November 14, 2021
  • In order to realize the economical and high-efficient development of the M tight sandstone gas reservoir in Canada, technical studies and innovations about layer subdivision, optimization of operation parameters during drilling and completion, optimal and fast drilling, post-frac flowback, and multi-well pad development were conducted. In this way, the key technologies integrated geology and engineering were formed, including a layer subdivision technology of a super thick sandstone reservoir, a match technology of operation parameters during drilling and completion by machine learning and big data analysis, optimal and fast drilling of horizontal wells with low costs, well-soaking flowback, as well as 3D multi-well pad development, etc. After field application, these technologies sharply increased the drilling and completion efficiency with evident decreased development costs. Further, the single well witnessed a remarkable increase in productivity, and achieved significantly increased efficiency and reduced costs. The successful development of the M tight sandstone gas reservoir has provided a technical reference for high-efficient development of unconventional reservoirs in China.
  • [1]
    US Energy Information Administration. International energy outlook 2019 with projections to 2050[R]. Washington, DC: EIA, 2019.
    [2]
    National Energy Board. Tight oil development in the Western Canada Sedimentary Basin: energy briefing note[R]. Alberta: National Energy Board, 2011.
    [3]
    陈作,刘红磊,李英杰,等. 国内外页岩油储层改造技术现状及发展建议[J]. 石油钻探技术,2021,49(4):1–7. doi: 10.11911/syztjs.2021081

    CHEN Zuo, LIU Honglei, LI Yingjie, et al. The current status and development suggestions for shale oil reservoir stimulation at home and abroad[J]. Petroleum Drilling Techniques, 2021, 49(4): 1–7. doi: 10.11911/syztjs.2021081
    [4]
    李庆辉,陈勉,WANG F P,等. 工程因素对页岩气产量的影响:以北美Haynesville页岩气藏为例[J]. 天然气工业,2012,32(4):54–59. doi: 10.3787/j.issn.1000-0976.2012.04.013

    LI Qinghui, CHEN Mian, WANG F P, et al. Influences of engineering factors on shale gas productivity: a case study from the Haynesville shale gas reservoir in North America[J]. Natural Gas Industry, 2012, 32(4): 54–59. doi: 10.3787/j.issn.1000-0976.2012.04.013
    [5]
    MASTERS J A. Deep basin gas trap, Western Canada[J]. AAPG Bulletin, 1979, 63(2): 152–181.
    [6]
    LAW B E. Basin-centered gas systems[J]. AAPG Bulletin, 2002, 86(11): 1891–1919.
    [7]
    光新军,叶海超,蒋海军. 北美页岩油气长水平段水平井钻井实践与启示[J]. 石油钻采工艺,2021,43(1):1–6.

    GUANG Xinjun, YE Haichao, JIANG Haijun. Drilling practice of shale oil & gas horizontal wells with long horizontal section in the North America and its enlightenment[J]. Oil Drilling & Production Technology, 2021, 43(1): 1–6.
    [8]
    石建刚,席传明,熊超,等. 吉木萨尔页岩油藏超长水平井水平段长度界限研究[J]. 特种油气藏,2020,27(4):136–142. doi: 10.3969/j.issn.1006-6535.2020.04.021

    SHI Jiangang, XI Chuanming, XIONG Chao, et al. Lateral length limit of ultra-long horizontal well in Jimsar shale oil reservoir[J]. Special Oil & Gas Reservoirs, 2020, 27(4): 136–142. doi: 10.3969/j.issn.1006-6535.2020.04.021
    [9]
    赵福豪,黄维安,雍锐,等. 地质工程一体化研究与应用现状[J]. 石油钻采工艺,2021,43(2):131–138.

    ZHAO Fuhao, HUANG Weian, YONG Rui, et al. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131–138.
    [10]
    章敬. 非常规油藏地质工程一体化效益开发实践:以准噶尔盆地吉木萨尔凹陷芦草沟组页岩油为例[J]. 断块油气田,2021,28(2):151–155.

    ZHANG Jing. Effective development practices of geology-engineering integration on unconventional oil reservoirs: taking Lucaogou Formation shale oil in Jimsar Sag, Junggar Basin for example[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 151–155.
    [11]
    曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073

    ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
    [12]
    刘巍,刘威,谷建伟. 基于机器学习方法的油井日产油量预测[J]. 石油钻采工艺,2020,42(1):70–75.

    LIU Wei, LIU Wei, GU Jianwei. Oil production prediction based on a machine learning method[J]. Oil Drilling & Production Technology, 2020, 42(1): 70–75.
    [13]
    耿黎东. 大数据技术在石油工程中的应用现状与发展建议[J]. 石油钻探技术,2021,49(2):72–78. doi: 10.11911/syztjs.2020134

    GENG Lidong. Application status and development suggestions of big data technology in petroleum engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72–78. doi: 10.11911/syztjs.2020134
    [14]
    王建龙,冯冠雄,刘学松,等. 长宁页岩气超长水平段水平井钻井完井关键技术[J]. 石油钻探技术,2020,48(5):9–14. doi: 10.11911/syztjs.2020086

    WANG Jianlong, FENG Guanxiong, LIU Xuesong, et al. Key technology for drilling and completion of shale gas horizontal wells with ultra-long horizontal sections in Changning Block[J]. Petroleum Drilling Techniques, 2020, 48(5): 9–14. doi: 10.11911/syztjs.2020086
    [15]
    王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10.

    WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drill-ing/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
    [16]
    刘博峰,张庆九,陈鑫,等. 致密油储层压裂液渗吸特征及水锁损害评价[J]. 断块油气田,2021,28(3):318–322.

    LIU Bofeng, ZHANG Qingjiu, CHEN Xin, et al. Completion fluid absorption characteristics for tight reservoir and damage evalua-tion[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 318–322.
    [17]
    王建龙,齐昌利,柳鹤,等. 沧东凹陷致密油气藏水平井钻井关键技术[J]. 石油钻探技术,2019,47(5):11–16.

    WANG Jianlong, QI Changli, LIU He, et al. Key technologies for drilling horizontal wells in tight oil and gas reservoirs in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2019, 47(5): 11–16.
    [18]
    秦文政,党军,臧传贞,等. 玛湖油田玛18井区 “工厂化” 水平井钻井技术[J]. 石油钻探技术,2019,47(2):15–20. doi: 10.11911/syztjs.2019025

    QIN Wenzheng, DANG Jun, ZANG Chuanzhen, et al. Factorization drilling technology of the horizontal well in the Ma18 Well Block of the Mahu Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(2): 15–20. doi: 10.11911/syztjs.2019025
    [19]
    路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001

    LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techni-ques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001
  • Related Articles

    [1]ZHANG Weiguo, JIANG Kun, SONG Yu, DENG Chenghui, HUANG Yiqiang, MA Yi. Drilling Speed Enhancement Method for Extended Reach Wells Based on Machine Learning and Bayesian Optimization[J]. Petroleum Drilling Techniques, 2025, 53(2): 38-45. DOI: 10.11911/syztjs.2025027
    [2]ZHANG Lina, REN Jianhua, HU Chunfeng. Three-Dimensional Development Characteristics and Fracture Network Interference of Atmospheric Shale Gas Reservoir[J]. Petroleum Drilling Techniques, 2023, 51(5): 149-155. DOI: 10.11911/syztjs.2023090
    [3]WENG Dingwei, JIANG Yun, YI Xinbin, HE Chunming, CHE Mingguang, ZHU Yihui. Optimization of Shut-in Time in Shale Gas Wells Based on the Characteristics of Fracturing Flowback[J]. Petroleum Drilling Techniques, 2023, 51(5): 49-57. DOI: 10.11911/syztjs.2023080
    [4]ZHANG Dongqing, WAN Yunqiang, ZHANG Wenping, DAI Yongbo, ZHANG Jincheng, XU Mingbiao. Optimal and Fast Drilling Technologies for Stereoscopic Development of the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2023, 51(2): 16-21. DOI: 10.11911/syztjs.2022097
    [5]YUAN Jianqiang. Key Engineering Technologies for Three-Dimensional Development of Multiple Formations of Shale Oil in Jiyang Depression[J]. Petroleum Drilling Techniques, 2023, 51(1): 1-8. DOI: 10.11911/syztjs.2023001
    [6]HOU Yawei, LIU Chao, XU Zhongbo, AN Yuhua, LI Jingling. A Method for Rapidly Predicting Recovery of Multi-Layer Oilfields Developed by Water-Flooding[J]. Petroleum Drilling Techniques, 2022, 50(5): 82-87. DOI: 10.11911/syztjs.2022102
    [7]LIN Yongmao, MIAO Weijie, LIU Lin, LI Yongming, QIU Ling. 3D Acid Fracturing Technology in Maokou Formation of Well Jinghe 1 in Southwestern Sichuan[J]. Petroleum Drilling Techniques, 2022, 50(2): 105-112. DOI: 10.11911/syztjs.2022009
    [8]HAN Yujiao. Intelligent Fluid Identification Based on the AdaBoost Machine Learning Algorithm for Reservoirs in Daniudi Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(1): 112-118. DOI: 10.11911/syztjs.2022018
    [9]Wang Yang, Zhao Bing, Yuan Qingyun, Zeng Cheng. Integrated Techniques in Tight Reservoir Development for Horizontal Wells in Block Shun 9[J]. Petroleum Drilling Techniques, 2015, 43(4): 48-52. DOI: 10.11911/syztjs.201504009
    [10]Zhao Chongzhen. 3D Fracturing Network Optimization Techniques for Horizontal Wells in Sandstone-Conglomerate Formations[J]. Petroleum Drilling Techniques, 2014, 42(5): 95-99. DOI: 10.11911/syztjs.201405017
  • Cited by

    Periodical cited type(5)

    1. 肖何,张超谟,苏向群. 应用测井资料定量识别碳酸盐岩沉积微相——以川东北元坝地区长兴组为例. 科学技术与工程. 2020(07): 2573-2582 .
    2. 李昌,贾俊,沈安江,王亮,梁正中,李振林. 基于常规测井识别微生物碳酸盐岩岩相新方法及应用. 地球物理学进展. 2020(05): 1792-1802 .
    3. 张坤贞,王舒,杨永灵,宫玉平,朱丹玲,杨优磊. 川东北普光地区茅口组白云岩发育特征. 海相油气地质. 2019(01): 20-26 .
    4. 熊欢. 大数据智能分形中岩性特征识别方法仿真. 计算机仿真. 2019(11): 59-63 .
    5. 刘毅,陆正元,吕晶,谢润成. 主成分分析法在泥页岩地层岩性识别中的应用. 断块油气田. 2017(03): 360-363 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (398) PDF downloads (77) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return