SHU Xiaobo, ZHU Jinzhi, TAO Huaizhi. A Detection Method for Effective Content of Sulfide Scavenger in Drilling Fluids and Its Field Test[J]. Petroleum Drilling Techniques, 2021, 49(6): 67-72. DOI: 10.11911/syztjs.2021109
Citation: SHU Xiaobo, ZHU Jinzhi, TAO Huaizhi. A Detection Method for Effective Content of Sulfide Scavenger in Drilling Fluids and Its Field Test[J]. Petroleum Drilling Techniques, 2021, 49(6): 67-72. DOI: 10.11911/syztjs.2021109

A Detection Method for Effective Content of Sulfide Scavenger in Drilling Fluids and Its Field Test

More Information
  • Received Date: February 01, 2021
  • Revised Date: September 01, 2021
  • Available Online: November 09, 2021
  • When drilling sulfur-containing oil and gas wells, safe drilling requires effective detecting the change of sulfide scavenger content and maintaining the effective concentration of it in drilling fluids. Given this, according to the linear relationship between sulfide reaction reagent and zinc-based sulfide scavenger, a relational expression utilized the indirect method was established for the content of sulfide scavenger and the consumption rate of sulfide reaction reagent. In addition, the consumption rate of sulfide reaction reagent in drilling fluids was analyzed by titration. Based on the above works, the detection method for effective content of sulfide scavenger was proposed and its accuracy was verified. The results showed that the detection method could effectively detect the content of sulfide scavenger in drilling fluids, with an absolute value of relative measurement error less than 5%. The result of the field test of the method showed that it could effectively detect the content change of sulfide scavenger in drilling fluids, thereby effectively maintaining the effective content of sulfide scavenger in drilling fluids in time. The research results demonstrate that the detection method can meet the requirements of field engineering application, effectively guarantee the safe drilling of sulfur-containing well sections, and avoid the waste of excessive use of the sulfide scavenger.
  • [1]
    徐龙君,毕智明. 高含硫天然气钻井环境风险评价及防范措施[J]. 油气田环境保护,2013,23(1):46–49,62. doi: 10.3969/j.issn.1005-3158.2013.01.015

    XU Longjun, BI Zhiming. Environmental risk assessment and preventive measures of high-sulfur gas drilling[J]. Environmental Protection of Oil & Gas Fields, 2013, 23(1): 46–49,62. doi: 10.3969/j.issn.1005-3158.2013.01.015
    [2]
    周文,兰伟,曹献龙,等. CO2-H2S环境下钻杆腐蚀机理与防护技术的研究进展[J]. 电镀与涂饰,2017,36(3):131–136.

    ZHOU Wen, LAN Wei, CAO Xianlong, et al. Research progress of corrosion mechanism and protection technologies for drill pipe in CO2-H2S environment[J]. Electroplating & Finishing, 2017, 36(3): 131–136.
    [3]
    罗曦. 大牛地奥陶系风化壳低含硫气井井筒除硫技术研究[J]. 重庆科技学院学报(自然科学版),2017,19(1):85–88.

    LUO Xi. Research on desulfurization technology for Ordovician weathering crust in Daniudi low sulfur gas field[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2017, 19(1): 85–88.
    [4]
    邓昌松,张宗谭,冯少波,等. 高含硫、大漏、超深水平井钻完井技术:以塔里木油田中古10HC井为例[J]. 石油钻采工艺,2018,40(1):27–32.

    DENG Changsong, ZHANG Zongtan, FENG Shaobo, et al. Drilling and completion technologies suitable for ultradeep horizontal wells of high sulfur content and serious circulation loss: a case study on Well 10HC of Middle Paleozoic in Tarim Oilfield[J]. Oil Drilling & Production Technology, 2018, 40(1): 27–32.
    [5]
    李嘉奇,余有金,钟波,等. 长膏盐岩段小间隙套管固井技术实践与认识:以楼探1井ϕ168.3 mm尾管悬挂固井为例[J]. 天然气勘探与开发,2019,42(4):133–139.

    LI Jiaqi, YU Youjin, ZHONG Bo, et al. Small-clearance casing cementing in long gypsum-salt intervals: an example from 168.3 mm liner suspension cementing in Loutan 1 Well[J]. Natural Gas Exploration and Development, 2019, 42(4): 133–139.
    [6]
    曾浩,常启帆,张旺,等. 除硫剂井筒内除硫效果动态评价方法[J]. 油气井测试,2020,29(1):74–78.

    ZENG Hao, CHANG Qifan, ZHANG Wang, et al. Dynamic evaluation method of sulfur removal effect in the wellbore of sulfur removal agent[J]. Well Testing, 2020, 29(1): 74–78.
    [7]
    万立夫,李根生,田守嶒,等. 钻井过程中硫化氢侵入井筒后的赋存状态研究[J]. 石油钻探技术,2013,41(6):29–33. doi: 10.3969/j.issn.1001-0890.2013.06.006

    WAN Lifu, LI Gensheng, TIAN Shouceng, et al. Occurrence state of hydrogen sulfide invading into wellbore during drilling[J]. Petroleum Drilling Techniques, 2013, 41(6): 29–33. doi: 10.3969/j.issn.1001-0890.2013.06.006
    [8]
    王均,蒲晓林,刘伟,等. 葡萄糖酸亚铁清除钻井液中硫化氢的实验研究与评价[J]. 钻采工艺,2020,43(3):97–99,7. doi: 10.3969/J.ISSN.1006-768X.2020.03.29

    WANG Jun, PU Xiaolin, LIU Wei, et al. Experimental study and evaluation of ferrous gluconate removing hydrogen sulfide from drilling fluid[J]. Drilling & Production Technology, 2020, 43(3): 97–99,7. doi: 10.3969/J.ISSN.1006-768X.2020.03.29
    [9]
    奚宏军. 钻井液有毒硫化物分析及处理方法研究[J]. 科学技术与工程,2013,13(8):2198–2202. doi: 10.3969/j.issn.1671-1815.2013.08.037

    XI Hongjun. Study on the toxic sulfide of oilfield drilling fluids and handled method[J]. Science Technology and Engineering, 2013, 13(8): 2198–2202. doi: 10.3969/j.issn.1671-1815.2013.08.037
    [10]
    卫伟,张洁,朱宝忠,等. 钻井液用除硫方法研究进展[J]. 化工技术与开发,2020,49(1):25–30,41. doi: 10.3969/j.issn.1671-9905.2020.01.007

    WEI Wei, ZHANG Jie, ZHU Baozhong, et al. Research progress of desulfurization method for drilling fluid[J]. Technology & Development of Chemical Industry, 2020, 49(1): 25–30,41. doi: 10.3969/j.issn.1671-9905.2020.01.007
    [11]
    王晓丹. 一种硫化氢侵入钻井液的在线连续监测方法[J]. 录井工程,2014,25(1):37–39,91.

    WANG Xiaodan. An on-line continuous monitoring method for hydrogen sulfide in drilling fluid[J]. Mud Logging Engineering, 2014, 25(1): 37–39,91.
    [12]
    王静,柳爱华,程清,等. 自动电位滴定仪在硫化物含量测定中的应用[J]. 分析仪器,2014(4):26–28. doi: 10.3969/j.issn.1001-232x.2014.04.008

    WANG Jing, LIU Aihua, CHENG Qing, et al. Determination of sulfide by automalic polent icmetric titration[J]. Analytical Instrumentation, 2014(4): 26–28. doi: 10.3969/j.issn.1001-232x.2014.04.008
    [13]
    舒小波,王娟,曾婷. 水基钻井液中硫化氢污染快速检测方法[J]. 石油地质与工程,2017,31(5):125–129. doi: 10.3969/j.issn.1673-8217.2017.05.033

    SHU Xiaobo, WANG Juan, ZENG Ting. Rapid detection of hydrogen sulphide pollution in water-based drilling fluid[J]. Petroleum Geology and Engineering, 2017, 31(5): 125–129. doi: 10.3969/j.issn.1673-8217.2017.05.033
    [14]
    张亚文. 现场与实验室H2S检测方法的比对研究[J]. 油气田地面工程,2018,37(5):23–25. doi: 10.3969/j.issn.1006-6896.2018.05.007

    ZHANG Yawen. Comparative study on onsite and laboratory detection methods for H2S[J]. Oil-Gasfield Surface Engineering, 2018, 37(5): 23–25. doi: 10.3969/j.issn.1006-6896.2018.05.007
    [15]
    朱金智,舒小波,张绍俊,等. 钻井液中可溶性硫化物快速定量检测方法研究[J]. 当代化工,2018,47(6):1298–1301. doi: 10.3969/j.issn.1671-0460.2018.06.053

    ZHU Jinzhi, SHU Xiaobo, ZHANG Shaojun, et al. Study on the rapid quantitative determination of soluble sulfide in drilling fluids[J]. Contemporary Chemical Industry, 2018, 47(6): 1298–1301. doi: 10.3969/j.issn.1671-0460.2018.06.053
  • Related Articles

    [1]WANG Biao, LI Jun, YANG Hongwei, ZHAN Jiahao, ZHANG Geng, LONG Zhenyu. An Early Intelligent Kick Detection Method Based on Variation Trend of Engineering Parameters[J]. Petroleum Drilling Techniques, 2024, 52(5): 145-153. DOI: 10.11911/syztjs.2024093
    [2]ZHANG Jinping, NI Huafeng, SHI Peiming. Safe and Efficient Drilling in Presalt High-Sulfur Reservoirs in the Eastern Gas Fields of Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(3): 22-29. DOI: 10.11911/syztjs.2023073
    [3]NIU Decheng, SU Yuanda. Adjacent Borehole Imaging Method Based on Acoustic Remote Detection in Shallow Unconsolidated Formations[J]. Petroleum Drilling Techniques, 2022, 50(6): 21-27. DOI: 10.11911/syztjs.2022111
    [4]ZHANG Bo, LUO Fangwei, SUN Bingcai, XIE Junfeng, XU Zhixiong, LIAO Hualin. A Method for Wellbore Integrity Detection in Deep Oil and Gas Wells[J]. Petroleum Drilling Techniques, 2021, 49(5): 114-120. DOI: 10.11911/syztjs.2021127
    [5]HAO Xining, WANG Yu, DANG Bo, LI Fengfei, XU Liangbin, LIU Zhengli. Research on Electromagnetic Detection and Positioning Methods and Tools for Relief Wells[J]. Petroleum Drilling Techniques, 2021, 49(3): 75-80. DOI: 10.11911/syztjs.2021005
    [6]Li Cui, Gao Deli. Preliminary Research on Detection Method for Connecting Relief Well to Blowout Well[J]. Petroleum Drilling Techniques, 2013, 41(3): 56-61. DOI: 10.3969/j.issn.1001-0890.2013.03.011
    [7]Wu Han, Wu Xiaodong, Zhang Qingsheng, Fang Yue, Zhao Yuxin. Reasonable Diameter Selection of Production String for Puguang Gas Well with High H2S[J]. Petroleum Drilling Techniques, 2012, 40(1): 98-102. DOI: 10.3969/j.issn.1001-0890.2012.01.020
    [8]Research of Detecting System for 140 MPa Ultrahigh Pressure Well Control Equipment in Northeast of Sichuan[J]. Petroleum Drilling Techniques, 2011, 39(4): 115-118. DOI: 10.3969/j.issn.1001-0890.2011.04.025
    [9]The Corrosion Evaluation in Transforming Exploration Well with High Sulfur Content into the Development Well[J]. Petroleum Drilling Techniques, 2011, 39(1): 18-24. DOI: 10.3969/j.issn.1001-0890.2011.01.004
  • Cited by

    Periodical cited type(2)

    1. 陆浩宇. 钻井过程中硫化氢防范安全防护措施研究. 化工安全与环境. 2025(06): 3-7 .
    2. 暴丹,周华安,刘思源,冯学荣,黄文章,肖金裕,卢浩. 油基钻井液高效除硫体系优化实验. 石油与天然气化工. 2023(04): 66-72 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (383) PDF downloads (60) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return