YANG Hongwei, LI Jun, LIU Jinlu, LIU Gonghui, GAO Xu, ZHAO Xuangang. Simulation Study on the Key Parameters Affecting Pressure-Controlled Drainage Effect[J]. Petroleum Drilling Techniques, 2022, 50(2): 85-91. DOI: 10.11911/syztjs.2021105
Citation: YANG Hongwei, LI Jun, LIU Jinlu, LIU Gonghui, GAO Xu, ZHAO Xuangang. Simulation Study on the Key Parameters Affecting Pressure-Controlled Drainage Effect[J]. Petroleum Drilling Techniques, 2022, 50(2): 85-91. DOI: 10.11911/syztjs.2021105

Simulation Study on the Key Parameters Affecting Pressure-Controlled Drainage Effect

More Information
  • Received Date: December 24, 2020
  • Revised Date: August 30, 2021
  • Available Online: February 09, 2022
  • Pressure-controlled drainage can effectively reduce formation pressure in a high-pressure brine layer, but the influence of some key parameters on its effect in operating process is still unclear. The characteristics of pressure-controlled drainage technology were analyzed, and its technological process was summarized. On the basis of the seepage theory of formation brine and wellbore flow theory, a mathematical model with dynamic parameters was built taking into consideration the formation pressure recovery in the shut-in period to simulate the entire process of pressure-controlled drainage. Taking Well Keshen A in Tarim Oilfield as an example, simulations were conducted and the results by simulation and measurement were analyzed. It was found that the error between them was small. The analysis of key parameters affecting the effects and cycles of water drainage showed that the shorter the shut-in time, the quicker the decline in formation pressure. When the pressure-bearing limit of throttle was raised from 5 MPa to 15 MPa, the number of times for cyclic sewage disposal could be reduced by half. However, when the formation permeability was low, the effects of the first seven operations of water drainage were remarkable, and thus the period for trial drainage was set to seven days. According to the above results, relevant improving measures were put forward to better control the key operational parameters, so as to enhance the effects of pressure-controlled drainage.
  • [1]
    孙谦, 任娜. 塔里木山前构造克深905井盐层控压放水应用及探讨[J/OL]. 中国科技期刊数据库: 工业A, 2017: 304. (2017-01-02) [2020-12-20]. http://www.cqvip.com/QK/71899X/201701/epub1000000680083.html.

    SUN Qian, REN Na. Application and discussion of stratum pressure-controlled drainage in Well Keshen 905, Tarim Piedmont structure[J/OL]. China Science and Technology Journal Database: Industry A, 2017: 304. (2017-01-02) [2020-12-20]. http://www.cqvip.com/QK/71899X/201701/epub1000000680083.html.
    [2]
    田径. 钻遇盐膏层高压盐水的井控技术[D]. 成都: 西南石油大学, 2012.

    TIAN Jing. Drilling well control technology of high pressure brine in salt-paste layer[D]. Chengdu: Southwest Petroleum University, 2012.
    [3]
    程天辉,何选蓬,王燕新,等. 复合盐层控压放水技术在克深905井的应用[J]. 钻采工艺,2017,40(4):108–109. doi: 10.3969/J.ISSN.1006-768X.2017.04.35

    CHENG Tianhui, HE Xuanpeng, WANG Yanxin, et al. Application of compound stratum pressure-controlled drainage technology in Well Kesheng 905[J]. Drilling & Production Technology, 2017, 40(4): 108–109. doi: 10.3969/J.ISSN.1006-768X.2017.04.35
    [4]
    梁红军,李军,李卫东,等. 高压盐水层控压放水室内实验研究[J]. 钻采工艺,2019,42(2):21–23.

    LIANG Hongjun, LI Jun, LI Weidong, et al. Experimental study on controlled pressure discharge of high pressure brine out of formations[J]. Drilling & Production Technology, 2019, 42(2): 21–23.
    [5]
    张朝举,李军,杨宏伟,等. 高压盐水层控压放水模拟计算研究[J]. 钻采工艺,2021,44(3):1–4.

    ZHANG Chaoju, LI Jun, YANG Hongwei, et al. Simulation computation of pressure-controlled water drainage in high-pressure brine layer[J]. Drilling & Production Technology, 2021, 44(3): 1–4.
    [6]
    宋付权,刘慈群. 低渗透多孔介质中新型渗流模型[J]. 新疆石油地质,2001,22(1):56–58.

    SONG Fuquan, LIU Ciqun. A new percolation model used for low permeability porous medium[J]. Xinjiang Petroleum Geology, 2001, 22(1): 56–58.
    [7]
    段慕白,李皋,孟英峰,等. 气体钻井地层动态出水量预测计算模型[J]. 天然气工业,2016,36(6):66–71.

    DUAN Mubai, LI Gao, MENG Yingfeng, et al. A prediction and calculation model for dynamic formation water yield in gas drilling[J]. Natural Gas Industry, 2016, 36(6): 66–71.
    [8]
    李祖光, 蒋宏伟, 翟应虎, 等. 气体钻井地层出水量理论模型[J]. 辽宁工程技术大学学报(自然科学版), 2009, 28(增刊1): 8-10.

    LI Zuguang, JIANG Hongwei, ZHAI Yinghu, et al. Water output model in gas drilling[J]. Journal of Liaoning Technical Univer-sity(Natural Science), 2009, 28(supplement1): 8-10.
    [9]
    吴建发,郭建春,赵金洲,等. 有水气井井底出水量计算方法研究[J]. 西南石油大学学报,2003,25(6):27–30.

    WU Jianfa, GUO Jianchun, ZHAO Jinzhou, et al. Study on calculation of water inflow rate of bottom hole of gas well with water[J]. Journal of Southwest Petroleum Institute, 2003, 25(6): 27–30.
    [10]
    金业权,李成,吴谦. 深水钻井井涌余量计算方法及压井方法选择[J]. 天然气工业,2016,36(7):68–73.

    JIN Yequan, LI Cheng, WU Qian. Methodology for kick tolerance calculation and well killing in deepwater drilling[J]. Natural Gas Industry, 2016, 36(7): 68–73.
    [11]
    李黔,杨先伦,伍贤柱. 压井过程中井底压力的控制方法[J]. 天然气工业,2013,33(9):87–90. doi: 10.3787/j.issn.1000-0976.2013.09.015

    LI Qian, YANG Xianlun, WU Xianzhu. A method of controlling the bottomhole pressures in well killing[J]. Natural Gas Industry, 2013, 33(9): 87–90. doi: 10.3787/j.issn.1000-0976.2013.09.015
    [12]
    李晓平. 利用气井压力恢复资料求产能方程和排泄半径[J]. 断块油气田,2001,8(1):24–26,67.

    LI Xiaoping. Determining deliverability equation and drainage radius using pressure buildup data of gas well[J]. Fault-Block Oil & Gas Field, 2001, 8(1): 24–26,67.
    [13]
    付晓飞,贾茹,王海学,等. 断层-盖层封闭性定量评价:以塔里木盆地库车坳陷大北—克拉苏构造带为例[J]. 石油勘探与开发,2015,42(3):300–309.

    FU Xiaofei, JIA Ru, WANG Haixue, et al. Quantitative evaluation of fault-caprock sealing capacity: a case from Dabei-Kelasu Structural Belt in Kuqa Depression, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(3): 300–309.
    [14]
    张锦荣,陈安明,周玉仓. 塔里木深井盐膏层钻井技术[J]. 石油钻探技术,2003,31(6):25–27.

    ZHANG Jinrong, CHEN Anming, ZHOU Yucang. The drilling technology for penetrating carbonate formation in Tarim deep wells[J]. Petroleum Drilling Techniques, 2003, 31(6): 25–27.
    [15]
    刘伟,周英操,石希天,等. 塔里木油田库车山前超高压盐水层精细控压钻井技术[J]. 石油钻探技术,2020,48(2):23–28.

    LIU Wei, ZHOU Yingcao, SHI Xitian, et al. Precise managed pressure drilling technology for ultra-high pressure brine layer in the Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 23–28.
    [16]
    许安明,吴超,尚江伟,等. 面积深度法在库车坳陷北部盐下构造变形研究中的应用[J]. 天然气工业,2015,35(6):37–42.

    XU Anming, WU Chao, SHANG Jiangwei, et al. Application of area-depth method in studies on the deformation of subsalt structures in the northern Kuqa Depression[J]. Natural Gas Industry, 2015, 35(6): 37–42.
    [17]
    刘伟,李牧,何思龙,等. 库车山前超高压盐水层控压固井实践与认识[J]. 钻采工艺,2020,43(5):31–33.

    LIU Wei,LI Mu,HE Silong,et al. Practice and understanding of managed pressure cementing for ultra-high pressure brine formation in the Kuche Piedmont[J]. Drilling & Production Technology, 2020, 43(5): 31–33.
    [18]
    江同文,孙雄伟. 中国深层天然气开发现状及技术发展趋势[J]. 石油钻采工艺,2020,42(5):610–621.

    JIANG Tongwen,SUN Xiongwei. Development status and technology development trend of deep natural gas in China [J]. Oil Drilling & Production Technology, 2020, 42(5): 610–621.
    [19]
    罗威,倪玲梅. 致密砂岩有效储层形成演化的主控因素:以库车坳陷巴什基奇克组砂岩储层为例[J]. 断块油气田,2020,27(1):7–12.

    LUO Wei,NI Lingmei. Main controlling factors of formation and evolution of effective reservoir in tight sandstone: taking Bashijiqike Formation sandstone reservoir in Kuqa Depression as an exam-ple[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 7–12.
    [20]
    王学龙,何选蓬,刘先锋,等. 塔里木克深9气田复杂超深井钻井关键技术[J]. 石油钻探技术,2020,48(1):15–20.

    WANG Xuelong, HE Xuanpeng, LIU Xianfeng, et al. Key drilling technologies for complex ultra-deep wells in the Tarim Keshen 9 Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(1): 15–20.
    [21]
    王建华,闫丽丽,谢盛,等. 塔里木油田库车山前高压盐水层油基钻井液技术[J]. 石油钻探技术,2020,48(2):29–33. doi: 10.11911/syztjs.2020007

    WANG Jianhua, YAN Lili, XIE Sheng, et al. Oil-based drilling fluid technology for high pressure brine layer in Kuqa Piedmont of the Tarim Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 29–33. doi: 10.11911/syztjs.2020007
  • Cited by

    Periodical cited type(3)

    1. 李涛,杨哲,池崇荣,聂尊浩,徐志凯,陈勋,王飞. 多压力系统超深气井排气降密度安全钻井技术. 油气藏评价与开发. 2025(03): 522-527+536 .
    2. 徐力群,李洪涛,杨桃,杜河山,邹林兵. 控压放水技术在超高压超强蠕变软泥岩钻井中的应用. 石油工业技术监督. 2024(10): 43-47 .
    3. 王军,晏凌,李洪兴,杨博仲. 采用控压释放技术处置地层圈闭效应. 石油钻采工艺. 2023(02): 179-183 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (261) PDF downloads (42) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return