YAO Xiaojiang, LU Huatao, SHANG Jie, WANG Qinghua, LI Yang. Optimization Design and Numerical Analysis of Flow Passage Converters in LWD Tools[J]. Petroleum Drilling Techniques, 2021, 49(5): 121-126. DOI: 10.11911/syztjs.2021069
Citation: YAO Xiaojiang, LU Huatao, SHANG Jie, WANG Qinghua, LI Yang. Optimization Design and Numerical Analysis of Flow Passage Converters in LWD Tools[J]. Petroleum Drilling Techniques, 2021, 49(5): 121-126. DOI: 10.11911/syztjs.2021069

Optimization Design and Numerical Analysis of Flow Passage Converters in LWD Tools

More Information
  • Received Date: February 20, 2021
  • Revised Date: July 14, 2021
  • Available Online: May 13, 2021
  • Improper design of flow passage converter section in LWD ( logging while drilling) tools can cause local flow-field turbulence and result in serious local erosion of the tool, thus reducing its service life. It can also lead to large pressure loss of the tool and affect its applicability. For this reason, CFD (computational fluid dynamics) method was applied for the optimization design of a certain type of flow passage converter in an LWD tool. According to the full 3D numerical simulation and comparison of four design schemes, the main factors affecting the flow-field performance of the flow passage converter were thought to be the expansion angle and the continuity of the cross-sectional area of the internal flow passage. The optimal design has a smaller expansion angle, a more continuous cross-sectional area of the internal flow passage, a gentler decline in axial velocity, a minimum total pressure loss, and a more uniform flow velocity distribution in the flow field. The research results showed that the expansion angle and the discontinuity of the cross-sectional area of the internal flow passage were negatively associated with the uniformity of the flow field distribution in the flow passage converter and positively with the pressure loss. The difference between theoretical and experimental total pressure loss coefficients was not more than 0.076%, and the change trend was the same as the result of theoretical analysis. The research results can effectively serve as a theoretical basis for the optimization design of flow passage converters.
  • [1]
    侯亮. 2020国外测井技术进展与趋势[J]. 世界石油工业,2020,27(6):49–54.

    HOU Liang. Development and trend of foreign well logging technologies in 2020[J]. World Petroleum Industry, 2020, 27(6): 49–54.
    [2]
    布志虹,任干能,陈乐. 随钻测井技术[J]. 断块油气田,2001,8(4):22–24. doi: 10.3969/j.issn.1005-8907.2001.04.007

    BU Zhihong, REN Ganneng, CHEN Le. Logging while drilling technology[J]. Fault-Block Oil & Gas Field, 2001, 8(4): 22–24. doi: 10.3969/j.issn.1005-8907.2001.04.007
    [3]
    涂春赵,张国强,刘如明,等. 随钻方位电阻率测井仪在渤海油田的应用与探索[J]. 石油管材与仪器,2020,6(6):70–73.

    TU Chunzhao, ZHANG Guoqiang, LIU Ruming, et al. Application of directional wave propagation resistivity tool in Bohai Oilfield[J]. Petroleum Tubular Goods & Instruments, 2020, 6(6): 70–73.
    [4]
    林楠,王敬萌,亢武臣,等. 最新随钻声波测井仪的技术性能与应用实例[J]. 石油钻探技术,2006,34(4):73–76. doi: 10.3969/j.issn.1001-0890.2006.04.022

    LIN Nan, WANG Jingmeng, KANG Wuchen, et al. Technical performances and applications of the newly developed sonic LWD tools[J]. Petroleum Drilling Techniques, 2006, 34(4): 73–76. doi: 10.3969/j.issn.1001-0890.2006.04.022
    [5]
    朱祖扬,倪卫宁,张卫,等. 随钻一体化测井仪平台开发[J]. 石油钻探技术,2019,47(1):118–126. doi: 10.11911/syztjs.2019016

    ZHU Zuyang, NI Weining, ZHANG Wei, et al. The development of an integrated logging instrument platform while drilling[J]. Petroleum Drilling Techniques, 2019, 47(1): 118–126. doi: 10.11911/syztjs.2019016
    [6]
    路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术,2019,47(3):148–155. doi: 10.11911/syztjs.2019060

    LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060
    [7]
    李亨,刘迪仁,倪小威,等. 钻井液侵入情况下随钻电磁波电阻率测井的响应[J]. 断块油气田,2019,26(5):675–680.

    LI Heng, LIU Diren, NI Xiaowei, et al. Logging responses of electromagnetic wave resistivity while drilling with drilling fluid intrusion[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 675–680.
    [8]
    李安宗,秦泓江,王珺,等. 随钻可控源中子测井仪器研究[J]. 石油钻采工艺,2011,33(5):105–109. doi: 10.3969/j.issn.1000-7393.2011.05.028

    LI Anzong, QIN Hongjiang, WANG Jun, et al. Study on neutron logging while drilling tool controllable neutron source[J]. Oil Drilling & Production Technology, 2011, 33(5): 105–109. doi: 10.3969/j.issn.1000-7393.2011.05.028
    [9]
    王智明,王红亮,邓晓清,等. 随钻仪器机电接口标准化推进产品产业化[J]. 石油工业技术监督,2017,33(12):19–22. doi: 10.3969/j.issn.1004-1346.2017.12.005

    WANG Zhiming, WANG Hongliang, DENG Xiaoqing, et al. Standardization of mechanical and electrical interfaces of LWD instruments to pomote product industrialization[J]. Technical Supervision in Petroleum Industry, 2017, 33(12): 19–22. doi: 10.3969/j.issn.1004-1346.2017.12.005
    [10]
    李杰,罗瑜林,刘西恩. 随钻用流道转换接头损伤规律研究及改进方法[J]. 石油矿场机械,2018,47(3):14–18. doi: 10.3969/j.issn.1001-3482.2018.03.003

    LI Jie, LUO Yulin, LIU Xien. Research on the damage revolution law of flow channels crossover subs while drilling and the development method[J]. Oil Field Equipment, 2018, 47(3): 14–18. doi: 10.3969/j.issn.1001-3482.2018.03.003
    [11]
    杨顺辉,陶兴华,殷琨,等. 计算流体动力学在冲击器设计和模拟中的应用[J]. 石油钻探技术,2008,36(5):40–42. doi: 10.3969/j.issn.1001-0890.2008.05.010

    YANG Shunhui, TAO Xinghua, YIN Kun, et al. Application of CFD on the design and simulation of hydro-efflux hammer[J]. Petroleum Drilling Techniques, 2008, 36(5): 40–42. doi: 10.3969/j.issn.1001-0890.2008.05.010
    [12]
    王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 4–17.

    WANG Fujun. Principle and application of CFD software for computational fluid dynamics analysis[M]. Beijing: Tsinghua Univer-sity Press, 2004: 4–17.
    [13]
    药晓江,董景新,尚捷,等. 随钻测井用涡轮发电机叶轮组水力性能分析[J]. 石油机械,2015,43(6):6–10, 75.

    YAO Xiaojiang, DONG Jingxin, SHANG Jie, et al. Hydraulic performance analysis of turbine impeller assembly for LWD[J]. China Petroleum Machinery, 2015, 43(6): 6–10, 75.
    [14]
    孔珑. 可压缩流体动力学[M]. 北京: 水利电力出版社, 1991: 3–18.

    KONG Long. Compressible fluid dynamics[M]. Beijing: Water Conservancy and Electric Power Press, 1991: 3–18.
    [15]
    张永学,李振林. 流体机械内部流动数值模拟方法综述[J]. 流体机械,2006,34(7):34–38. doi: 10.3969/j.issn.1005-0329.2006.07.009

    ZHANG Yongxue, LI Zhenlin. Summary of numerical simulation methods for flow in fluid machinery[J]. Fluid Machinery, 2006, 34(7): 34–38. doi: 10.3969/j.issn.1005-0329.2006.07.009
  • Related Articles

    [1]XIAN Yuxi, CHEN Chaofeng, FENG Meng, HAO Youzhi. Numerical Simulation of Multiphase Flow in Fracture Networks in Shale Oil Reservoir[J]. Petroleum Drilling Techniques, 2021, 49(5): 94-100. DOI: 10.11911/syztjs.2021090
    [2]FENG Jin, CHI Shaolin, ZHANG Manlai, CHEN Wei, HUANG Xinyu. Optimal Design of a Downhole Seismic Generator[J]. Petroleum Drilling Techniques, 2020, 48(5): 120-126. DOI: 10.11911/syztjs.2020117
    [3]YANG Yingtao, WEN Qingzhi, DUAN Xiaofei, WANG Shuting, WANG Feng. Numerical Simulation for Flow Conductivity in Channeling Fractures[J]. Petroleum Drilling Techniques, 2016, 44(6): 104-110. DOI: 10.11911/syztjs.201606018
    [4]Chen Xiuping, Zou Deyong, Li Dongjie, Lou Erbiao. Numerical Simulation Study on the Anti-Balling Performance of PDC Drill Bits[J]. Petroleum Drilling Techniques, 2015, 43(6): 108-113. DOI: 10.11911/syztjs.201506020
    [5]Song Xianzhi, Li Gensheng, Wang Mengshu, Yi Can, Su Xinliang. Numerical Simulation on Cuttings Carrying Regularity for Horizontal Wells Drilled with Coiled Tubing[J]. Petroleum Drilling Techniques, 2014, 42(2): 28-32. DOI: 10.3969/j.issn.1001-0890.2014.02.006
    [6]Nie Xiangrong, Yang Shenglai. Numerical Simulation of Cooling Damage to High Pour-Point Oil Reservoirs[J]. Petroleum Drilling Techniques, 2014, 42(1): 100-104. DOI: 10.3969/j.issn.1001-0890.2014.01.020
    [7]Zhao Xinxin, Wu Xuefeng, Gao Yonghai, Li Hao, Guo Yanli. Numerical Simulation of Temperature Distribution of Blowout Preventers in Deepwater Drilling[J]. Petroleum Drilling Techniques, 2013, 41(3): 46-50. DOI: 10.3969/j.issn.1001-0890.2013.03.009
    [8]Xu Peng, Liu Xinyun, Shi Libao. Numerical Simulation for the Effect of Ground Stress on Explosive Fracturing[J]. Petroleum Drilling Techniques, 2013, 41(1): 65-69. DOI: 10.3969/j.issn.1001-0890.2013.01.013
    [9]Li Hongqian. Numerical Simulation on the Annular Flow Induced by Spiral Casing Centralizer[J]. Petroleum Drilling Techniques, 2012, 40(2): 25-29. DOI: 10.3969/j.issn.1001-0890.2012.02.005
    [10]Li Chunying, Wu Xiaodong. Numerical Simulation of Remaining Oil Distribution in Cyclothem[J]. Petroleum Drilling Techniques, 2012, 40(1): 88-91. DOI: 10.3969/j.issn.1001-0890.2012.01.018
  • Cited by

    Periodical cited type(6)

    1. 许期聪,陈东,冯思恒. 大排量直井段随钻测斜工具的研制与应用. 石油钻探技术. 2024(02): 174-180 . 本站查看
    2. 单玉奇,殷晓丹. 石油探井用流道转换器加工方法研究. 现代制造技术与装备. 2024(05): 118-120 .
    3. 杨恒灿,张玉霖,林颢屿,菅志军,鲍东升,黄玥. 旋转导向钻井系统三肋流道转换器设计研究. 石油矿场机械. 2024(06): 56-61 .
    4. 卢华涛,药晓江,王清华,丁元皓,菅光霄. 随钻测斜仪扶正器优化设计与流体仿真. 中国石油和化工标准与质量. 2022(10): 73-75 .
    5. 简旭,李皋,王军,韩旭,黄兵,王松涛. 气体钻井声波超前测距方法与数值模拟. 石油钻探技术. 2022(03): 132-138 . 本站查看
    6. 张正玉,袁军,李阳兵. 高强度高温高压直推存储式测井系统在超深井的应用. 石油钻探技术. 2022(05): 117-124 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (719) PDF downloads (117) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return