TIAN Fuchun, LIU Xuewei, ZHANG Shengchuan, ZHANG Gaofeng, SHAO Lifei, CHEN Ziwei. Continuous Sand Fracturing Technology with Slick Water for Continental Shale Oil in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 118-124. DOI: 10.11911/syztjs.2021021
Citation: TIAN Fuchun, LIU Xuewei, ZHANG Shengchuan, ZHANG Gaofeng, SHAO Lifei, CHEN Ziwei. Continuous Sand Fracturing Technology with Slick Water for Continental Shale Oil in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 118-124. DOI: 10.11911/syztjs.2021021

Continuous Sand Fracturing Technology with Slick Water for Continental Shale Oil in the Dagang Oilfield

More Information
  • Received Date: February 06, 2021
  • Revised Date: May 30, 2021
  • Available Online: February 03, 2021
  • Horizontal shale oil wells have the problems of high fluid volume and a low sand ratio during conventional slick water fracturing, which lead to poor stimulation effect. For this reason, a slick water system was developed with variable viscosity by selecting a polymer-based friction reducers and optimizing the dosage of clay stabilizers, demulsifying cleanup additives, and persulfate gel breakers. With the system, it was possible to adjust the viscosity of slick water by changing the dosage of polymer-based friction reducers. Then, the proppants composed of 70/140 mesh quartz sand and 40/70 mesh ceramsite were selected after a conductivity simulation. Finally, after pilot tests, a slick water technology for continuous sand fracturing suitable for the continental shale oil reservoirs in the Dagang Oilfield was proposed, which was tested in Well GY2H. As a result, the technology increased the construction efficiency and silt carrying capacity of the unit liquid, reduced the consumption of the fracturing fluid, and formed an effective fracture-network system, achieving excellent reservoir reformation and fracturing stimulation. The field tests proved that this technology could accommodate continuous sand fracturing with slick water in horizontal shale oil wells, providing a technical support for the efficient development of shale oil.
  • [1]
    杨灿,王鹏,饶开波,等. 大港油田页岩油水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):34–41. doi: 10.11911/syztjs.2020036

    YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34–41. doi: 10.11911/syztjs.2020036
    [2]
    闫林,陈福利,王志平,等. 我国页岩油有效开发面临的挑战及关键技术研究[J]. 石油钻探技术,2020,48(3):63–69. doi: 10.11911/syztjs.2020058

    YAN Lin, CHEN Fuli, WANG Zhiping, et al. Challenges and technical countermeasures for effective development of shale oil in China[J]. Petroleum Drilling Techniques, 2020, 48(3): 63–69. doi: 10.11911/syztjs.2020058
    [3]
    王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10.

    WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
    [4]
    柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术,2020,48(1):9–14. doi: 10.11911/syztjs.2020029

    LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14. doi: 10.11911/syztjs.2020029
    [5]
    雷浩,何建华,胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏,2019,26(3):94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017

    LEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017
    [6]
    路宗羽,赵飞,雷鸣,等. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术[J]. 石油钻探技术,2019,47(2):9–14. doi: 10.11911/syztjs.2019029

    LU Zongyu, ZHAO Fei, LEI Ming, et al. Key technologies for drilling horizontal wells in glutenite tight oil reservoirs in the Mahu Oilfield of Xinjiang[J]. Petroleum Drilling Techniques, 2019, 47(2): 9–14. doi: 10.11911/syztjs.2019029
    [7]
    魏俊,刘通义,戴秀兰,等. 疏水改性聚丙烯酰胺的反相微乳液聚合[J]. 石油化工,2018,47(11):1215–1220. doi: 10.3969/j.issn.1000-8144.2018.11.009

    WEI Jun, LIU Tongyi, DAI Xiulan, et al. Hydrophobic modified polyacryamides prepared by reverse microemulsion polymerization [J]. Petrochemical Technology, 2018, 47(11): 1215–1220. doi: 10.3969/j.issn.1000-8144.2018.11.009
    [8]
    蒲秀刚,时战楠,韩文中,等. 陆相湖盆细粒沉积区页岩层系石油地质特征与油气发现:以黄骅坳陷沧东凹陷孔二段为例[J]. 油气地质与采收率,2019,26(1):46–58.

    PU Xiugang, SHI Zhannan, HAN Wenzhong, et al. Petroleum geological characteristics and hydrocarbon discovery of shale system in fine-grained sedimentary area of lacustrine basin: a case study of Kong2 Member in Cangdong Sag, Huanghua Depression[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(1): 46–58.
    [9]
    安杰,刘涛,范华波,等. 鄂尔多斯盆地致密油滑溜水压裂液的研究与应用[J]. 断块油气田,2016,23(4):541–544.

    AN Jie, LIU Tao, FAN Huabo, et al. Research and application of slippery water fracturing fluid for tight oil in Ordos Basin[J]. Fault-Block Oil & Gas Field, 2016, 23(4): 541–544.
    [10]
    范宇恒,肖勇军,郭兴午,等. 清洁滑溜水压裂液在长宁H26平台的应用[J]. 钻井液与完井液,2018,35(2):122–125. doi: 10.3969/j.issn.1001-5620.2018.02.020

    FAN Yuheng, XIAO Yongjun, GUO Xingwu, et al. Application of clear slick water fracturing fluid on Changning-H26 Platform[J]. Drilling Fluid & Completion Fluid, 2018, 35(2): 122–125. doi: 10.3969/j.issn.1001-5620.2018.02.020
    [11]
    李广环,龙涛,周涛,等. 大港油田南部页岩油勘探开发钻井液技术[J]. 钻井液与完井液,2020,37(2):174–179. doi: 10.3969/j.issn.1001-5620.2020.02.007

    LI Guanghuan, LONG Tao, ZHOU Tao, et al. Drilling fluid technology for exploration and development of shale oil in south of Dagang Oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 174–179. doi: 10.3969/j.issn.1001-5620.2020.02.007
    [12]
    王建龙,齐昌利,柳鹤,等. 沧东凹陷致密油气藏水平井钻井关键技术[J]. 石油钻探技术,2019,47(5):11–16.

    WANG Jianlong, QI Changli, LIU He, et al. Key technologies for drilling horizontal wells in tight oil and gas reservoirs in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2019, 47(5): 11–16.
    [13]
    李小林,吴朝明,赵殊勋,等. 大港油田页岩油储层固井技术研究与应用[J]. 钻井液与完井液,2020,37(2):232–238. doi: 10.3969/j.issn.1001-5620.2020.02.017

    LI Xiaolin, WU Chaoming, ZHAO Shuxun, et al. Technology for cementing shale oil reservoirs in Dagang Oilfield: study and application[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 232–238. doi: 10.3969/j.issn.1001-5620.2020.02.017
    [14]
    周贤海,臧艳彬. 涪陵地区页岩气山地“井工厂”钻井技术[J]. 石油钻探技术,2015,43(3):45–49.

    ZHOU Xianhai, ZANG Yanbin. Application of “well factory” drilling technology in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(3): 45–49.
    [15]
    钟森,谭明文,赵祚培,等. 永川深层页岩气藏水平井体积压裂技术[J]. 石油钻采工艺,2019,41(4):529–533.

    ZHONG Sen, TAN Mingwen, ZHAO Zuopei, et al. Volume fracturing for horizontal wells in Yongchuan deep shale gas reservoirs[J]. Oil Drilling & Production Technology, 2019, 41(4): 529–533.
    [16]
    李平,樊平天,郝世彦,等. 大液量大排量低砂比滑溜水分段压裂工艺应用实践[J]. 石油钻采工艺,2019,41(4):534–540.

    LI Ping, FAN Pingtian, HAO Shiyan, et al. Application practice of the slick-water staged fracturing of massive fluid, high displacement and low sand concentration[J]. Oil Drilling & Production Technology, 2019, 41(4): 534–540.
    [17]
    邵立民,靳宝军,李爱山,等. 非常规油气藏滑溜水压裂液的研究与应用[J]. 吐哈油气,2012,17(4):383–387.

    SHAO Limin, JIN Baojun, LI Aishan, et al. Study and application of slick water fracturing fluid of unconventional hydrocarbon reservoir[J]. Tuha Oil & Gas, 2012, 17(4): 383–387.
    [18]
    李庆辉,陈勉,金衍,等. 页岩气储层岩石力学特性及脆性评价[J]. 石油钻探技术,2012,40(4):17–22. doi: 10.3969/j.issn.1001-0890.2012.04.004

    LI Qinghui, CHEN Mian, JIN Yan, et al. Rock mechanical properties and brittleness evaluation of shale gas reservoir[J]. Petroleum Drilling Techniques, 2012, 40(4): 17–22. doi: 10.3969/j.issn.1001-0890.2012.04.004
    [19]
    薛承瑾. 页岩气压裂技术现状及发展建议[J]. 石油钻探技术,2011,39(3):24–29. doi: 10.3969/j.issn.1001-0890.2011.03.004

    XUE Chengjin. Technical advance and development proposals of shale gas fracturing[J]. Petroleum Drilling Techniques, 2011, 39(3): 24–29. doi: 10.3969/j.issn.1001-0890.2011.03.004
    [20]
    邵尚奇,田守嶒,李根生,等. 泥页岩地层水力裂缝延伸方位研究[J]. 石油钻探技术,2014,42(3):27–31.

    SHAO Shangqi, TIAN Shouceng, LI Gensheng, et al. Propagating orientation of hydraulic fractures in muddy shale formation[J]. Petroleum Drilling Techniques, 2014, 42(3): 27–31.
    [21]
    蒋廷学,贾长贵,王海涛,等. 页岩气网络压裂设计方法研究[J]. 石油钻探技术,2011,39(3):36–40. doi: 10.3969/j.issn.1001-0890.2011.03.006

    JIANG Tingxue, JIA Changgui, WANG Haitao, et al. Study on network fracturing design method in shale gas[J]. Petroleum Drilling Techniques, 2011, 39(3): 36–40. doi: 10.3969/j.issn.1001-0890.2011.03.006
    [22]
    陈勉,金衍. 基于岩心分析的页岩气压裂工艺参数优选[J]. 石油钻探技术,2012,40(4):7–12. doi: 10.3969/j.issn.1001-0890.2012.04.002

    CHEN Mian, JIN Yan. Shale gas fracturing technology parameters optimization based on core analysis[J]. Petroleum Drilling Techniques, 2012, 40(4): 7–12. doi: 10.3969/j.issn.1001-0890.2012.04.002
    [23]
    王海涛,蒋廷学,卞晓冰,等. 深层页岩压裂工艺优化与现场试验[J]. 石油钻探技术,2016,44(2):76–81. doi: 10.11911/syztjs.201602013

    WANG Haitao, JIANG Tingxue, BIAN Xiaobing, et al. Optimization and field application of hydraulic fracturing techniques in deep shale reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(2): 76–81. doi: 10.11911/syztjs.201602013
    [24]
    曾凌翔,郑云川,蒲祖凤. 页岩重复压裂工艺技术研究及应用[J]. 钻采工艺,2020,43(1):65–68. doi: 10.3969/J.ISSN.1006-768X.2020.01.19

    ZENG Lingxiang, ZHENG Yunchuan, PU Zufeng. Research and application of shale refracturing technology[J]. Drilling & Production Technology, 2020, 43(1): 65–68. doi: 10.3969/J.ISSN.1006-768X.2020.01.19
    [25]
    周清晓. 浅谈斯托克斯定律的应用[J]. 教育现代化,2019,6(68):230–232.

    ZHOU Qingxiao. The application of Stokes Law[J]. Education Modernization, 2019, 6(68): 230–232.
    [26]
    唐伟, 马俊修, 王松, 等. M2井区水平井体积压裂支撑剂沉降运移模拟研究: 2020年中国非常规油气储层改造技术研讨会, 昆明, 2020-10-28–30[C].

    TANG Wei, MA Junxiu, WANG Song, et al. Simulation of proppant settlement and migration in horizontal wells in M2 well block: China Unconventional Oil and Gas Reservoir Reconstruction Technology Symposium in 2020, Kunming, October 28–30, 2020[C].
  • Related Articles

    [1]HAO Xiaolong, GAO Guoyin, TAN Haifeng, YANG Cheng, LI Yuehuan. Downhole Compression Algorithm for Remote Detection Acoustic Logging Data Based on Adaptive Differential Pulse Code Modulation[J]. Petroleum Drilling Techniques, 2024, 52(6): 148-155. DOI: 10.11911/syztjs.2024078
    [2]WANG Jianlong, WANG Yuezhi, QIU Weihong, YU Chen, ZHANG Feifei, WANG Xueying. Drilling Intelligent Decision Support System Based on Big Data and Fusion Model[J]. Petroleum Drilling Techniques, 2024, 52(5): 105-116. DOI: 10.11911/syztjs.2024102
    [3]PEI Xueliang, HUANG Zhe. Exploration and Suggestion of Key Technologies for Intelligent Drilling in Sinopec Shengli Oilfield Service Corporation[J]. Petroleum Drilling Techniques, 2024, 52(5): 62-68. DOI: 10.11911/syztjs.2024087
    [4]ZENG Yijin, LI Daqi, CHEN Zengwei, ZHANG Dujie, CUI Yahui, ZHANG Feifei. Loss Analysis and Diagnosis Based on Natural Language Processing and Big Data Analysis[J]. Petroleum Drilling Techniques, 2023, 51(6): 1-11. DOI: 10.11911/syztjs.2023108
    [5]GENG Lidong. Application Status and Development Suggestions of Big Data Technology in Petroleum Engineering[J]. Petroleum Drilling Techniques, 2021, 49(2): 72-78. DOI: 10.11911/syztjs.2020134
    [6]ZHANG Zhiliang, WANG Wei, YI Ming, LIU Qiang. Design and Implementation of a Downhole Safety Monitoring System[J]. Petroleum Drilling Techniques, 2020, 48(6): 65-70. DOI: 10.11911/syztjs.2020094
    [7]Ma Hai, Xiao Hongbing, Yang Jinzhou, Li Yonghua. A Real-Time LWD Data Processing Method Based on Akima Interpolation[J]. Petroleum Drilling Techniques, 2015, 43(3): 82-86. DOI: 10.11911/syztjs.201503016
    [8]Liu Qiguo, Liu Zhenping, Wang Hongyu, Chen Xing, Cai Rushuai, Qin Ke. A Method to Calculate Gas Well Controlled Reserves and Water Influx from Production Data[J]. Petroleum Drilling Techniques, 2015, 43(1): 96-99. DOI: 10.11911/syztjs.201501016
    [9]Ye Zhi, Fan Honghai, Ji Rongyi, Li Chaowei, Cai Jun. Investigation and Application of Pore Pressure Monitoring Method Based on LWD Data[J]. Petroleum Drilling Techniques, 2014, 42(2): 41-45. DOI: 10.3969/j.issn.1001-0890.2014.02.009
    [10]Zhu Zuyang, Li Guangquan, Zhang Wei, Li Sanguo, Ni Weining. Research and Manufacture of a Microchip-Tracer Used in Drilling Fluids While Drilling[J]. Petroleum Drilling Techniques, 2013, 41(5): 111-114. DOI: 10.3969/j.issn.1001-0890.2013.05.022
  • Cited by

    Periodical cited type(1)

    1. 姚熠博,成家杰,王猛,董宇,孙建孟. 涠西南流二段页岩油地化录井饱和度计算方法研究. 测井技术. 2025(02): 179-188 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return