SONG Xianzhi, LI Jiacheng, SHI Yu, XU Fuqiang, ZENG Yijin. Laboratory-Scale Experimental Study on the Injection-Production Performance of a Multilateral-Well Enhanced Geothermal System[J]. Petroleum Drilling Techniques, 2021, 49(1): 81-87. DOI: 10.11911/syztjs.2021019
Citation: SONG Xianzhi, LI Jiacheng, SHI Yu, XU Fuqiang, ZENG Yijin. Laboratory-Scale Experimental Study on the Injection-Production Performance of a Multilateral-Well Enhanced Geothermal System[J]. Petroleum Drilling Techniques, 2021, 49(1): 81-87. DOI: 10.11911/syztjs.2021019

Laboratory-Scale Experimental Study on the Injection-Production Performance of a Multilateral-Well Enhanced Geothermal System

More Information
  • Received Date: July 19, 2020
  • Revised Date: December 21, 2020
  • Available Online: December 27, 2020
  • Instituting a multilateral-well enhanced geothermal system is a novel method to enhance fluid injectivity and productivity for geothermal development by using lateral wells. To study the influencing laws of different factors of the system oninjection-production performance, fluid flow and heat transfer experiments for multilateral-well were conducted. Experiments were performed to evaluate the injection-production performance and investigate the effects of different factors on the injectivity and productivity of lateral wells based on the multilateral-well enhanced geothermal experimental system and artificial rock samples. In addition, the injection-production performances of a multilateral well and a single vertical well were compared. Results indicated that decreasing the injection temperature can increase injection pressure and improve injectivity of the system, while increasing the number of lateral-wells and length can decrease the injection pressure and increase the outlet flow rate.The injection-production performance of the multilateral-well enhanced geothermal system is much better than that of the single-vertical-well geothermal system, and is more suitable for the development and injection of the geothermal energy. Findings prove that multilateral well can enhance the injectivity and productivity of the geothermal system, providing a theoretical foundation and guidance for field applications of the multilateral-well enhanced geothermal system.
  • [1]
    曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术,2015,43(2):1–7.

    ZENG Yijin. Technical progress and thinking for development of hot dry rock (HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1–7.
    [2]
    谢文苹,路睿,张盛生,等. 青海共和盆地干热岩勘查进展及开发技术探讨[J]. 石油钻探技术,2020,48(3):77–84. doi: 10.11911/syztjs.2020042

    XIE Wenping, LU Rui, ZHANG Shengsheng, et al. Progress in hot dry rock exploration and a discussion on development technology in the Gonghe Basin of Qinghai[J]. Petroleum Drilling Techniques, 2020, 48(3): 77–84. doi: 10.11911/syztjs.2020042
    [3]
    张薇,王贵玲,刘峰,等. 中国沉积盆地型地热资源特征[J]. 中国地质,2019,46(2):255–268.

    ZHANG Wei, WANG Guiling, LIU Feng, et al. Characteristics of geothermal resources in sedimentary basins[J]. Geology in China, 2019, 46(2): 255–268.
    [4]
    庞忠和,罗霁,龚宇烈. 国内外地热产业发展现状与展望[J]. 中国核工业,2017(12):47–50. doi: 10.3969/j.issn.1007-8282.2017.12.016

    PANG Zhonghe, LUO Ji, GONG Yulie. State-of-the-art of the geothermal industry[J]. China Nuclear Industry, 2017(12): 47–50. doi: 10.3969/j.issn.1007-8282.2017.12.016
    [5]
    LUKAWSKI M Z, SILVERMAN R L, TESTER J W. Uncertainty analysis of geothermal well drilling and completion costs[J]. Geothermics, 2016, 64: 382–391.
    [6]
    SONG Xianzhi, SHI Yu, LI Gensheng, et al. Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells[J]. Applied Energy, 2018, 218: 325–337.
    [7]
    SHI Yu, SONG Xianzhi, SHEN Zhonghou, et al. Numerical investigation on heat extraction performance of a CO2 enhanced geothermal system with multilateral wells[J]. Energy, 2018, 163: 38–51.
    [8]
    杨永印,沈忠厚,王瑞和,等. 径向水平钻进技术试验研究[J]. 石油钻探技术,1998,26(1):4–7.

    YANG Yongyin, SHEN Zhonghou, WANG Ruihe, et al. Experimental studies on radial horizontal drilling technology[J]. Petroleum Drilling Techniques, 1998, 26(1): 4–7.
    [9]
    林凤波,尚庆春,薛铃,等. 水力开窗径向水平孔技术研究与试验[J]. 石油钻探技术,2002,30(5):25–26. doi: 10.3969/j.issn.1001-0890.2002.05.010

    LIN Fengbo, SHANG Qingchun, XUE Ling, et al. Research and experiments on cutting windows by water-jetting techniques[J]. Petroleum Drilling Techniques, 2002, 30(5): 25–26. doi: 10.3969/j.issn.1001-0890.2002.05.010
    [10]
    迟焕鹏,李根生,黄中伟,等. 水力喷射径向水平井技术研究现状及分析[J]. 钻采工艺,2013,36(4):119–124. doi: 10.3969/J.ISSN.1006-768X.2013.04.38

    CHI Huanpeng, LI Gensheng, HUANG Zhongwei, et al. Research status and analysis of hydraulic jet radial horizontal well technology[J]. Drilling & Production Technology, 2013, 36(4): 119–124. doi: 10.3969/J.ISSN.1006-768X.2013.04.38
    [11]
    傅志明. 利用超短半径侧钻水平井挖潜厚油层顶部剩余油[J]. 油气田地面工程,2013,32(3):34–35. doi: 10.3969/j.issn.1006-6896.2013.3.017

    FU Zhiming. Exploiting residual oil of thick oil pay using ultra-short radial horizontal well technology[J]. Oil-Gasfield Surface Engineering, 2013, 32(3): 34–35. doi: 10.3969/j.issn.1006-6896.2013.3.017
    [12]
    NAIR R, PETERS E, SLIAUPA S, et al. A case study of radial jetting technology for enhancing geothermal energy systems at Klaipeda geothermal demonstration plant: proceedings of 42nd Workshop on Geothermal Reservoir Engineering, February 13-15, 2017[C]. Stanford, CA: Stanford University , 2017.
    [13]
    ZHANG Jie, XIE Jingxuan, LIU Xueling. Numerical evaluation of heat extraction for EGS with tree-shaped wells[J]. International Journal of Heat and Mass Transfer, 2019, 134: 296–310.
    [14]
    LENTSCH D, SAVVATIS A, HOFSTÄTTER H, et al. Potential of multilateral wells for geothermal projects in the Southern German Molasse Basin[C]//Proceedings World Geothermal Congress, Reykjavik, Iceland, 2020.
    [15]
    石宇. 多分支井循环二氧化碳开采地热资源机理与参数研究[D]. 北京: 中国石油大学(北京), 2020.

    SHI Yu. Study on mechanism and parameters of geothermal exploitation using multilateral wells with CO2 as working fluid[D]. Beijing: China University of Petroleum(Beijing), 2020.
    [16]
    SHI Yu, SONG Xianzhi, WANG Gaosheng, et al. Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system[J]. Applied Energy, 2019, 249: 14–27.
    [17]
    SHI Yu, SONG Xianzhi, LI Jiacheng, et al. Numerical investigation on heat extraction performance of a multilateralwell enhanced geothermal system with a discrete fracture network[J]. Fuel, 2019, 244: 207–226.
    [18]
    SHI Yu, SONG Xianzhi, WANG Gaosheng, et al. Numerical study on heat extraction performance of a multilateral-well enhanced geothermal system considering complex hydraulic and natural frac-tures[J]. Renewable Energy, 2019, 141: 950–963.
    [19]
    赵阳,周宏伟,钟江城. 人工砂岩物理力学性质的实验研究[J]. 实验力学,2018,33(3):385–394. doi: 10.7520/1001-4888-17-121

    ZHAO Yang, ZHOU Hongwei, ZHONG Jiangcheng. Experimental study of physical and mechanical properties of artificial sandstone[J]. Journal of Experimental Mechanics, 2018, 33(3): 385–394. doi: 10.7520/1001-4888-17-121
    [20]
    于庆磊,杨天鸿,唐春安,等. 不同孔隙配比人工岩芯试件水力学试验研究[J]. 东北大学学报(自然科学版),2007,28(2):258–261.

    YU Qinglei, YANG Tianhong, TANG Chun’an, et al. Hydraulic testing study on artificial specimens with different pore proportioning[J]. Journal of Northeastern University (Natural Science), 2007, 28(2): 258–261.
    [21]
    许天福,张延军,于子望,等. 干热岩水力压裂实验室模拟研究[J]. 科技导报,2015,33(19):35–39. doi: 10.3981/j.issn.1000-7857.2015.19.004

    XU Tianfu, ZHANG Yanjun, YU Ziwang, et al. Laboratory study of hydraulic fracturing on hot dry rock[J]. Science & Technology Review, 2015, 33(19): 35–39. doi: 10.3981/j.issn.1000-7857.2015.19.004
    [22]
    凌璐璐,苏正,吴能友. 增强型地热系统开采过程中热储渗透率对温度场的影响[J]. 可再生能源,2015,33(1):82–90.

    LING Lulu, SU Zheng, WU Nengyou. Effect of reservoir permeability on temperature field in EGS mining process[J]. Renewable Energy, 2015, 33(1): 82–90.
    [23]
    于进洋. 西藏羊易高温水热型地热井筒温度场研究[D]. 北京: 中国地质大学(北京), 2013.

    YU Jinyang. Research on the wellbore temperature for geothermal wells in Tibet[D]. Beijing: China University of Geosciences (Beijing), 2013.
  • Related Articles

    [1]LI Bangguo, HOU Jiakun, LEI Zhaofeng, ZHANG Bo, WANG Bin, CHEN Jiang. Evaluation of Shale Oil Extraction by Supercritical CO2 and Analysis of Influencing Factors[J]. Petroleum Drilling Techniques, 2024, 52(4): 94-103. DOI: 10.11911/syztjs.2024069
    [2]LIU Jinlu, LI Jun, HE Jutao, YANG Hongwei, LIU Gonghui, LI Hui. A Segmented Prediction Method for Fluid Density and Rheology During Managed Pressure Cementing Injection Stage[J]. Petroleum Drilling Techniques, 2024, 52(1): 45-53. DOI: 10.11911/syztjs.2024005
    [3]WANG Tao, LI Yao, HE Hui. A Coupling Allocation Model of Finely Layered Water Injection Considering Pressure Constraint[J]. Petroleum Drilling Techniques, 2023, 51(2): 95-101. DOI: 10.11911/syztjs.2023012
    [4]LIU Hui, DING Xinlu, ZHANG Shijie, FANG Yungui, HAO Xiaobo, ZHENG Weige. Integrated Calculation Method of Pressure and Formation Parameters in Gas Injection Process of Underground Gas Storage[J]. Petroleum Drilling Techniques, 2022, 50(6): 64-71. DOI: 10.11911/syztjs.2022047
    [5]YU Yan, GAO Rui, JIA Yudan, QIAO Lei, ZHOU Wei. Laboratory Tests on the Rock Breaking Effects of Plasma Torch and Suggestions for Field Application[J]. Petroleum Drilling Techniques, 2022, 50(4): 59-63. DOI: 10.11911/syztjs.2022034
    [6]WU Shengnan, ZHANG Laibin, DENG Jingen, CAO Yanfeng, WEN Min. Monte Carlo Simulation-Based Uncertainty Analysis on Extreme Water Injection Pressure[J]. Petroleum Drilling Techniques, 2016, 44(3): 109-114. DOI: 10.11911/syztjs.201603020
    [7]Qian Kun, Yang Shenglai, Dong Junchang, Liu Hui, Liu Pan. A Study of Asphaltene Onset Pressure during High-Pressure Gas Injection[J]. Petroleum Drilling Techniques, 2015, 43(2): 116-119. DOI: 10.11911/syztjs.201502020
    [8]Li Qinyang, Xiong Youming, Liu Liming, Ma Shuai, Li Yang. A Method for Improving Underbalanced Pressure Design in Injection Wells Using Negative Pressure Blocking[J]. Petroleum Drilling Techniques, 2014, 42(6): 97-101. DOI: 10.11911/syztjs.201406019
    [9]Dou Liangbin, Li Gensheng, Shen Zhonghou, Wu Chunfang, Bi Gang. Wellbore Pressure and Temperature Prediction Model and Its Affecting Factors for CO2 Injection Wells[J]. Petroleum Drilling Techniques, 2013, 41(1): 76-81. DOI: 10.3969/j.issn.1001-0890.2013.01.015
    [10]Li Xiaoyi, Wang Zhiming, Wan Xin, Zhang Jian. Numerical Experiments of Gas Injection Pressurization for CBM Open Hole Cavity Completion[J]. Petroleum Drilling Techniques, 2012, 40(2): 14-19. DOI: 10.3969/j.issn.1001-0890.2012.02.003
  • Cited by

    Periodical cited type(8)

    1. 李彦操,周建民,周晓轩,刘霞继,杨倩云,邱春阳. 车斜577井深部地层防塌钻井液技术难点分析与研究. 四川化工. 2024(03): 24-27 .
    2. 李秀灵,赵怀珍,蓝强,李琼. 抗高温低固相钻井液在桩古斜411井的应用. 承德石油高等专科学校学报. 2023(02): 46-52 .
    3. 曾佳,程慧君. 无固相钻井液技术现状及发展趋势. 辽宁化工. 2022(03): 388-390+441 .
    4. 刘瑞,于培志. 抗高温水基钻井液处理剂研究进展. 应用化工. 2021(06): 1618-1621 .
    5. 徐明磊,佟乐,杨双春,张同金,ELAMAN,刘阳. 环保型耐高温无固相钻井液体系研究进展. 应用化工. 2020(08): 2063-2067+2074 .
    6. 卢兴国. 新型疏水缔合聚合物钻井液体系性能评价. 化学与生物工程. 2020(10): 47-50 .
    7. 耿学礼,苏延辉,郑晓斌,高波. 无固相保护煤层钻井液研究及应用. 石油钻采工艺. 2017(04): 455-459 .
    8. 张群正,刘金磊,孙淑娟,周慧鑫,杨萌,白永强. 控流管路中降滤失剂的合成与性能研究. 钻井液与完井液. 2017(03): 39-43 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (687) PDF downloads (113) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return