SU Xiong, YANG Minghe, CHEN Weifeng, ZHANG Jun. Study and Application of Wellbore Temperature Field Characteristics in the Ultra-Deep Slim-Hole Wells in the Shunbei No.1 Area[J]. Petroleum Drilling Techniques, 2021, 49(3): 67-74. DOI: 10.11911/syztjs.2021006
Citation: SU Xiong, YANG Minghe, CHEN Weifeng, ZHANG Jun. Study and Application of Wellbore Temperature Field Characteristics in the Ultra-Deep Slim-Hole Wells in the Shunbei No.1 Area[J]. Petroleum Drilling Techniques, 2021, 49(3): 67-74. DOI: 10.11911/syztjs.2021006

Study and Application of Wellbore Temperature Field Characteristics in the Ultra-Deep Slim-Hole Wells in the Shunbei No.1 Area

More Information
  • Received Date: June 17, 2020
  • Revised Date: December 15, 2020
  • Available Online: February 28, 2021
  • The ultra-deep slim-hole wells in the Shunbei No.1 Area have high wellbore temperatures. In some wells, the temperatures even exceed the temperature resistance of the existing domestic measuring instruments, which often leads to probe burnout and no signal input to the instruments. To solve this problem, a mathematical model was established for transient wellbore temperature fields, which analyzed the field profiles at different parameters, and introduced the concept of “well depth at critical temperature” (WDCT). On this basis, in order to reduce the bottomhole circulating temperature and move the WDCT down to the bottom, the sensitivity of seven parameters were analyzed, including rheology, thermal property, displacement, and inlet temperature of drilling fluid, and the thermal property of the drill string. Then the physical parameters that could significantly influence the wellbore temperature field were obtained. It is found by analysis that WDCT could be divided into true, transitional, and equivalent categories according to the variation curves of wellbore temperature. The wellbore temperature field was sensitive to the thermal conductivity of the drill string, the specific heat capacity of drilling fluid, and the thermal conductivity of drilling fluid in a descending order, which corresponded to the equivalent WDCT. The results showed that changing the thermal properties of drilling fluid or reducing the thermal conductivity of the drill string could effectively lower the bottomhole circulating temperature in the Shunbei No.1 Area.
  • [1]
    RAMEY H J Jr. Wellbore heat transmission[J]. Journal of Petroleum Technology, 1962, 14(4): 427–435.
    [2]
    BEIRUTE R M. A circulating and shut-in well-temperrature-profile simulator[J]. Journal of Petroleum Technology, 1991, 43(9): 1140–1146. doi: 10.2118/17591-PA
    [3]
    MARSHALL D W, BENTSEN R G. A computer model to determine the temperature distributions in a wellbore[J]. Journal of Canadian Petroleum Technology, 1982, 21(1): 63–75.
    [4]
    SAGAR R, DOTY D R, SCHMID T Z. Predicting temperature profiles in a flowing wells[J]. SPE Production & Operations, 1991, 6(4): 441–448.
    [5]
    DURRANT A J, THANBYNAYAGAM R K M. Wellbore heat transmission and pressure drop for steam/water injection and geothermal production: a simple solution technique[J]. SPE Reservoir Engineering, 1986, 1(2): 148–162. doi: 10.2118/12939-PA
    [6]
    HASAN A R, KABIR C S. Heat transfer during two-phase flow in wellbores: part two-wellbore fluid temperature[R]. SPE 22866, 1991.
    [7]
    RAYMOND L R. Temperature distribution in a circulating drilling fluid[J]. Journal of Petroleum Technology, 1969, 21(3): 333–341. doi: 10.2118/2320-PA
    [8]
    WILLHITE G P. Overall heat transfer coefficients in steam and hot water injection wells[J]. Journal of Petroleum Technology, 1967, 19(5): 607–615. doi: 10.2118/1449-PA
    [9]
    KELLER H H, COUCH E J, BERRY P M. Temperature distribution in cirlatating mud columns[J]. SPE Journal, 1973, 13(1): 23–30.
    [10]
    ZHANG Zheng, XIONG Youming, GAO Yun, et al. Wellbore temperature distribution during circulation stage when well-kick occurs in a continuous formation from the bottom-hole[J]. Energy, 2018, 164: 964–977. doi: 10.1016/j.energy.2018.09.048
    [11]
    何世明,何平,尹成,等. 井下循环温度模型及其敏感性分析[J]. 西南石油学院学报,2002,24(1):57–60.

    HE Shiming, HE Ping, YIN Cheng, et al. A wellbore temperature model & its para-metric sensitivity analysis[J]. Journal of Southweat Petroleum Institute, 2002, 24(1): 57–60.
    [12]
    付建红,苏昱,姜伟,等. 深层页岩气水平井井筒瞬态温度场研究与应用[J]. 西南石油大学学报(自然科学版),2019,41(6):165–173.

    FU Jianhong, SU Yu, JIANG Wei, et al. Research and application of wellbore transient temperature in deep shale gas horizontal wells[J]. Journal of Southweat Petroleum University (Science & Technology Edition), 2019, 41(6): 165–173.
    [13]
    赵江鹏,孙友宏,郭威. 钻井泥浆冷却技术发展现状与新型泥浆冷却系统的研究[J]. 探矿工程(岩土钻掘工程),2010,37(9):1–5.

    ZHAO Jiangpeng, SUN Youhong, GUO Wei. Current situation of drilling mud cooling technology and research on new type of drilling mud cooling system[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2010, 37(9): 1–5.
    [14]
    CHAMPNESS E. Drilling fluid cooling system: US966157[P]. 1980-08-05.
    [15]
    KAMENOSONO H, UCHIDA T, AKAKU K, et al. Information on the Kakkonda Deep Geothermal Reservoir obtained by side-track drilling of WD-1[J]. Geothermal Resources Council Transactions, 1997, 21: 283–288.
    [16]
    de SOUSA P F B, BORGES V L, PEREIRA I C, et al. Estimation of heat flux and temperature field during drilling process using dynamic observers based on Green’s function[J]. Applied Thermal Engineering, 2012, 48(1): 144–154.
    [17]
    杨谋,孟英峰,李皋,等. 钻井液径向温度梯度与轴向导热对井筒温度分布影响[J]. 物理学报,2013,62(7):079101. doi: 10.7498/aps.62.079101

    YANG Mou, MENG Yingfeng, LI Gao, et al. Effects of the radial temperature gradient and axial conduction of drilling fluid on the wellbore temperature distribution[J]. Acta Physica Sinica, 2013, 62(7): 079101. doi: 10.7498/aps.62.079101
    [18]
    杨谋,孟英峰,李皋,等. 钻井全过程井筒-地层瞬态传热模型[J]. 石油学报,2013,34(2):366–371. doi: 10.7623/syxb201302021

    YANG Mou, MENG Yingfeng, LI Gao, et al. A transient heat transfer model of wellbore and formation during the whole drilling process[J]. Acta Perolei Sinica, 2013, 34(2): 366–371. doi: 10.7623/syxb201302021
    [19]
    王良书,李成,刘绍文,等. 塔里木盆地北缘库车前陆盆地地温梯度分布特征[J]. 地球物理学报,2003,46(3):403–407. doi: 10.3321/j.issn:0001-5733.2003.03.019

    WANG Liangshu, LI Cheng, LIU Shaowen, et al. Geotemperature granient disribution of Kuqa foreland basin, north of Tarim, China[J]. Chinese Journal of Geophysics, 2003, 46(3): 403–407. doi: 10.3321/j.issn:0001-5733.2003.03.019
  • Related Articles

    [1]LIU Xianghua, YU Yang, LIU Jingtao. Status Quo and Development Suggestions of Key Drilling Technologies for Extra-Deep Wells in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 72-77. DOI: 10.11911/syztjs.2024028
    [2]DING Shidong, PANG Wei, ZHOU Jun, YANG dekai, HE Tong. Staged Completion Technology for Ultra-Deep Wells in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 66-71. DOI: 10.11911/syztjs.2024046
    [3]HU Wenge. Progress and the Way Forward of Key Engineering Technologies for “Deep Underground Engineering” in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2024, 52(2): 58-65. DOI: 10.11911/syztjs.2024027
    [4]CHEN Zongqi, LIU Xianghua, BAI Binzhen, YI Hao. Technical Progress and Development Consideration of Drilling and Completion Engineering for Ultra-Deep Wells in the Shunbei Oil & Gas Field[J]. Petroleum Drilling Techniques, 2022, 50(4): 1-10. DOI: 10.11911/syztjs.2022069
    [5]YANG Hongqi, SUN Lianhuan, AO Zhuqing, SANG Laiyu, YANG Guangguo, GAO Yuan. Anti-Leakage Cementing Technology for the Long Well Section below Technical Casing of Ultra-Deep Wells in the No.1 Area of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(6): 33-39. DOI: 10.11911/syztjs.2020110
    [6]LI Xinyong, LI Chunyue, ZHAO Bing, FANG Haoqing, HUANG Yanfei, HU Wenting. Acidizing Technology for Deep Penetration in Main Fault Zone of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 82-87. DOI: 10.11911/syztjs.2020014
    [7]CHEN Xiuping, LI Shuanggui, YU Yang, ZHOU Dan. Anti-Collapse Drilling Fluid Technology for Broken Carbonate Formation in Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 12-16. DOI: 10.11911/syztjs.2020005
    [8]LI Shuanggui, YU Yang, FAN Yanfang, ZENG Dezhi. Optimal Design of Casing Programs for Ultra-Deep Wellsin the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(2): 6-11. DOI: 10.11911/syztjs.2020002
    [9]JIANG Tingxue, ZHOU Jun, JIA Wenfeng, ZHOU Linbo. Deep Penetration Acid-Fracturing Technology for Ultra-Deep Carbonate Oil & Gas Reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140-147. DOI: 10.11911/syztjs.2019058
    [10]LIN Yongxue, WANG Weiji, JIN Junbin. Key Drilling Fluid Technology in the Ultra Deep Section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113-120. DOI: 10.11911/syztjs.2019068
  • Cited by

    Periodical cited type(10)

    1. 李凡,李大奇,刘金华,何仲,张杜杰. 顺北油田二叠系防漏堵漏技术进展及发展建议. 长江大学学报(自然科学版). 2024(02): 76-83 .
    2. 李凡,李大奇,金军斌,张杜杰,方俊伟,王伟吉. 顺北油气田辉绿岩地层井壁稳定钻井液技术. 石油钻探技术. 2023(02): 61-67 . 本站查看
    3. 喻化民,薛莉,吴红玲,李海彪,冯丹,杨冀平,鲁娜. 满深区块深井强封堵钻井液技术. 钻井液与完井液. 2022(02): 171-179 .
    4. 李文霞,王居贺,王治国,杨卫星,史玉才. 顺北油气田超深高温水平井井眼轨迹控制技术. 石油钻探技术. 2022(04): 18-24 . 本站查看
    5. 刘湘华,刘彪,杜欢,王沫. 顺北油气田断裂带超深水平井优快钻井技术. 石油钻探技术. 2022(04): 11-17 . 本站查看
    6. 陈宗琦,刘湘华,白彬珍,易浩. 顺北油气田特深井钻井完井技术进展与发展思考. 石油钻探技术. 2022(04): 1-10 . 本站查看
    7. 张煜,李海英,陈修平,卜旭强,韩俊. 塔里木盆地顺北地区超深断控缝洞型油气藏地质-工程一体化实践与成效. 石油与天然气地质. 2022(06): 1466-1480 .
    8. 李新勇,纪成,王涛,郭天魁,王晓之,曲占庆. 顺北油田上浮剂封堵及泵注参数实验研究. 断块油气田. 2021(01): 139-144 .
    9. 邱春阳,张翔宇,赵红香,王雪晨,张海青,陈二丁. 顺北区块深层井壁稳定钻井液技术. 天然气勘探与开发. 2021(02): 81-86 .
    10. 李银婷,董小虎. 顺北油田钻井参数强化的提速效果评价. 钻探工程. 2021(07): 72-78 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (794) PDF downloads (145) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return