ZHANG Feng, LUO Shaocheng, LI Zhen, MU Yu, LI Tingting. Logging Evaluation on the Effectiveness of Karst Fractured-Vuggy Reservoirs in the Maokou Formation, Sichuan Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 116-122. DOI: 10.11911/syztjs.2020140
Citation: ZHANG Feng, LUO Shaocheng, LI Zhen, MU Yu, LI Tingting. Logging Evaluation on the Effectiveness of Karst Fractured-Vuggy Reservoirs in the Maokou Formation, Sichuan Basin[J]. Petroleum Drilling Techniques, 2020, 48(6): 116-122. DOI: 10.11911/syztjs.2020140

Logging Evaluation on the Effectiveness of Karst Fractured-Vuggy Reservoirs in the Maokou Formation, Sichuan Basin

More Information
  • Received Date: June 18, 2020
  • Revised Date: September 27, 2020
  • Available Online: October 21, 2020
  • Logging evaluation was carried out to solve the problems of high levels of heterogeneity, complexity with respect to typing reservoir spaces, and difficulty in evaluating the reservoir effectiveness in carbonate reservoirs in the Maokou Formation, Sichuan Basin. By analyzing the pore structure of the fractured-vuggy reservoirs of the Maokou Formation in the working area, the reservoir space was classified based on the tri-porosity model and the relationship between bond index and total porosity, connected fracture-vug porosity and isolated fracture-vug porosity. The information was then combined with core calibration logging, the mean value and variance of apparent porosity spectrum and apparent formation water resistivity spectrum extracted from micro-resistivity scan imaging logging data, and fracture porosity and other sensitive parameters that reflect pores, vugs and fractures, as well as the data from well testing. Integrating above information, and evaluation standard for reservoir effectiveness was established as follows: For porous and vuggy reservoirs, the mean value of electric imaging apparent porosity spectrum of Class I reservoir is greater than 1.9 and the corresponding variance is greater than 1.2, and those of Class II reservoirs are greater than 1.7 and 0.9, respectively. For fractured reservoirs, the fracture porosity of Class I reservoir is greater than 0.30 while that of Class II reservoir is between 0.05 and 0.30. Enhancing the connectivity of fractures can obviously improve the effectiveness of the reservoir. For the porous-fracture and vuggy-fracture reservoirs, the mean value of apparent formation water resistivity spectrum of Class I reservoir is greater than 700, and the variance is greater than 300, and those of Class II reservoirs are 500–700 and 100–300, respectively. According to the evaluation standard, a secondary interpretation of 20 exploration wells in the working area was carried out, which effectively improved the interpretation coincidence rate of fractured-vuggy reservoirs, and resulted in achieving a good application effect.
  • [1]
    陈维涛,周瑶琪,马永生,等. 关于龙门山地区东吴运动的存在及其性质的认识[J]. 地质学报, 2007, 81(11): 1518–1525. doi: 10.3321/j.issn:0001-5717.2007.11.006

    CHEN Weitao, ZHOU Yaoqi, MA Yongsheng, et al. The knowledge on the existence and nature of the dongwu movement in the Longmen Mountain Area[J]. Acta Geologica Sinica, 2007, 81(11): 1518–1525. doi: 10.3321/j.issn:0001-5717.2007.11.006
    [2]
    朱传庆,徐明,袁玉松,等. 峨眉山玄武岩喷发在四川盆地的地热学响应[J]. 科学通报, 2010, 55(6): 474–482.

    ZHU Chuanqing, XU Ming, YUAN Yusong, et al. Geothermal response of Emeishan basalt eruption in Sichuan Basin[J]. Science Bulletin, 2010, 55(6): 474–482.
    [3]
    梁定益,聂泽同,宋志敏. 扬子西缘东吴伸展运动[J]. 地球科学——中国地质大学学报, 1994, 19(4): 443–452.

    LIANG Dingyi, NIE Zetong, SONG Zhimin. Extensional Dongwu movement in western margin of Yangtze region[J]. Earth Science—Journal of China University of Geosciences, 1994, 19(4): 443–452.
    [4]
    何斌,徐义刚,王雅玫,等. 东吴运动性质的厘定及其时空演变规律[J]. 地球科学——中国地质大学学报, 2005, 30(1): 89–96.

    HE Bin, XU Yigang, WANG Yamei, et al. Nature of the Dongwu Movement and its temporal and spatial evolution[J]. Earth Science—Journal of China University of Geosciences, 2005, 30(1): 89–96.
    [5]
    陈更生,岳宏. 四川盆地川西南地区下二叠统气藏类型及有效缝洞分布规律[J]. 天然气工业, 1995, 15(6): 10–13.

    CHEN Gengsheng, YUE Hong. Gas reservoir types and effective fracture-vug distribution laws of lower permian series in the southwest area of Sichuan Basin[J]. Natural Gas Industry, 1995, 15(6): 10–13.
    [6]
    颜其彬,庞雯. 川南茅口灰岩岩溶特征与油气关系[J]. 西南石油学院学报, 1993, 15(3): 11–16.

    YAN Qibin, PANG Wen. Relationship between oil/gas accumulaition and karst features of Maokou formation in Luzhou area, Sichuan[J]. Journal of Southwest Petroleum Institute, 1993, 15(3): 11–16.
    [7]
    江青春,胡素云,汪泽成,等. 四川盆地茅口组风化壳岩溶古地貌及勘探选区[J]. 石油学报, 2012, 33(6): 949–960. doi: 10.7623/syxb201206005

    JIANG Qingchun, HU Suyun, WANG Zecheng, et al. Paleokarst landform of the weathering crust of middle permian Maokou formation in Sichuan Basin and selection of exploration regions[J]. Acta Petrolei Sinica, 2012, 33(6): 949–960. doi: 10.7623/syxb201206005
    [8]
    郑荣才,胡忠贵,冯青平,等. 川东北地区长兴组白云岩储层的成因研究[J]. 矿物岩石, 2007, 27(4): 78–84. doi: 10.3969/j.issn.1001-6872.2007.04.013

    ZHENG Rongcai, HU Zhonggui, FENG Qingping, et al. Genesis of dolomite reservoir of the Changxing Formation of upper permian, northeast Sichuan Basin[J]. Journal of Mineralogy and Petrology, 2007, 27(4): 78–84. doi: 10.3969/j.issn.1001-6872.2007.04.013
    [9]
    田瀚,杨敏. 碳酸盐岩缝洞型储层测井评价方法[J]. 物探与化探, 2015, 39(3): 545–552. doi: 10.11720/wtyht.2015.3.18

    TIAN Han, YANG Min. The logging evaluation methods for fractured-vuggy carbonate reservoirs[J]. Geophysical and Geochemical Exploration, 2015, 39(3): 545–552. doi: 10.11720/wtyht.2015.3.18
    [10]
    张欣, 尚锁贵, 张国强, 等.基于多资料的砂砾岩储层有效性精细评价[J].石油钻采工艺, 2018, 40(增刊1): 70–72, 83.

    ZHANG Xin, SHANG Suogui, ZHANG Guoqiang, et al. Fine evaluation on the effectiveness of glutenite reservoirs based on diverse data[J].Oil Drilling & Production Technology, 2018, 40(supplement 1): 70–72, 83.
    [11]
    刘伟,张晋言,张文娇,等. 基于电成像测井资料的砂砾岩储层有效性分类评价方法[J]. 石油钻探技术, 2016, 44(4): 114–119.

    LIU Wei,ZHANG Jinyan,ZHANG Wenjiao,et al. An evaluation method for glutenite reservoir effectiveness classification based on electrical imaging logging data[J]. Petroleum Drilling Techniques, 2016, 44(4): 114–119.
    [12]
    王亮,司马立强,谢兵,等. 龙岗地区雷口坡组复杂碳酸盐岩储层有效性评价[J]. 特种油气藏, 2011, 18(5): 37–40.

    WANG Liang,SIMA Liqiang,XIE Bing,et al. Effectiveness evaluation of the complex carbonate reservoir in the Leikoupo Formation of Longgang Area[J]. Special Oil & Gas Reservoirs, 2011, 18(5): 37–40.
    [13]
    耿斌,胡心红. 孔隙结构研究在低渗透储层有效性评价中的应用[J]. 断块油气田, 2011, 18(2): 187–190.

    GENG Bin, HU Xinhong. Application of pore structure study in effectiveness evaluation of low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2011, 18(2): 187–190.
    [14]
    ROBERTO A F, AGUILERA R. A triple porosity model for petrophysical analysis of naturally fractured reservoir[J]. Petrophysics, 2004, 45(2): 157–166.
    [15]
    AL-GHAMDI A, CHEN B, BEHMANESH H, et al. An improved tripe-porosity model for evaluation of naturally fractured reservoirs[R]. SPE 132879, 2010.
    [16]
    田瀚,沈安江,张建勇,等. 一种缝洞型碳酸盐岩储层胶结指数m计算新方法[J]. 地球物理学报, 2019, 62(6): 2276–2285. doi: 10.6038/cjg2019L0633

    TIAN Han, SHEN Anjiang, ZHANG Jianyong, et al. A new method for calculating the cementation index m of fracture cave carbonate reservoir[J]. Chinese Journal of Geophysics, 2019, 62(6): 2276–2285. doi: 10.6038/cjg2019L0633
    [17]
    曹毅民,章成广,杨维英,等. 裂缝性储层电成像测井孔隙度定量评价方法研究[J]. 测井技术, 2006, 30(3): 237–239. doi: 10.3969/j.issn.1004-1338.2006.03.015

    CAO Yimin, ZHANG Chengguang, YANG Weiying, et al. Fractured reservoir porosity quantitative evaluation using electric imaging logging data[J]. Well Logging Technology, 2006, 30(3): 237–239. doi: 10.3969/j.issn.1004-1338.2006.03.015
    [18]
    FU Haicheng, ZOU Changchun, LI Ning, et al. A quantitative approach to characterize porosity structure from borehole electrical images and its application in a carbonate reservoir in the Tazhong Area, Tarim Basin[J]. SPE Reservoir Evaluation & Engineering, 2016, 19(1): 18–23.
    [19]
    TYAGI A K, BHADURI A. Porosity analysis using borehole electrical images in carbonate reservoirs[R]. SPWLA-2002-KK, 2002.
    [20]
    李宁,肖承文,伍丽红,等. 复杂碳酸盐岩储层测井评价: 中国的创新与发展[J]. 测井技术, 2014, 38(1): 1–10.

    LI Ning, XIAO Chengwen, WU Lihong, et al. The innovation and development of log evaluation for complex carbonate reservoir in China[J]. Well Logging Technology, 2014, 38(1): 1–10.
    [21]
    王晓畅,李军,张松扬,等. 基于测井资料的裂缝面孔率标定裂缝孔隙度的数值模拟及应用[J]. 中国石油大学学报(自然科学版), 2011, 35(2): 51–56.

    WANG Xiaochang, LI Jun, ZHANG Songyang, et al. Numerical simulation and application of fracture surface porosity calibrating fracture porosity by logging data[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(2): 51–56.
    [22]
    李庆峰,李晓峰,刘岩. 白云岩储层电成像视地层水电阻率流体识别技术[J]. 测井技术, 2017, 41(4): 412–415.

    LI Qingfeng, LI Xiaofeng, LIU Yan. Fluid identification technique based on imaging apparent formation water resistivity in dolomite reservoirs[J]. Well Logging Technology, 2017, 41(4): 412–415.
    [23]
    李善军,汪涵明,肖承文,等. 碳酸盐岩地层中裂缝孔隙度的定量解释[J]. 测井技术, 1997, 21(3): 205–214.

    LI Shanjun, WANG Hanming, XIAO Chengwen, et al. Quantitative interpretation of fracture porosity in carbonates[J]. Well Logging Technology, 1997, 21(3): 205–214.
    [24]
    张程恩,潘保芝,张晓峰,等. FMI测井资料在非均质储层评价中的应用[J]. 石油物探, 2011, 50(6): 630–633. doi: 10.3969/j.issn.1000-1441.2011.06.015

    ZHANG Cheng’en, PAN Baozhi, ZHANG Xiaofeng, et al. Application of FMI logging data in evaluation of heterogeneous reservoir[J]. Geophysical Prospecting for Petroleum, 2011, 50(6): 630–633. doi: 10.3969/j.issn.1000-1441.2011.06.015
    [25]
    张晓峰, 潘保芝. 储层裂缝发育等级划分研究[J]. 测井技术, 2013, 37(4): 393–396. doi: 10.3969/j.issn.1004-1338.2013.04.011

    ZHANG Xiaofeng, PAN Baozhi. Study on classification of fracture growth[J]. Well Logging Technology, 2013, 37(4): 393–396. doi: 10.3969/j.issn.1004-1338.2013.04.011
  • Related Articles

    [1]LI Heting, DAI Junqing, LI Zhenxiang. Practices and Understandings of Acid Fracturing of Ultra/Extra-Deep Exploratory Wells in Sichuan Basin and Its Periphery[J]. Petroleum Drilling Techniques, 2024, 52(2): 202-210. DOI: 10.11911/syztjs.2024026
    [2]GUO Jianchun, ZHAO Feng, ZHAN Li, ZHANG Hang, ZENG Jie. Recent Advances and Development Suggestions of Temporary Plugging and Diverting Fracturing Technology for Shale Gas Reservoirs in the Sichuan Basin[J]. Petroleum Drilling Techniques, 2023, 51(4): 170-183. DOI: 10.11911/syztjs.2023039
    [3]ZHANG Zhengyu, YUAN Jun, LI Yangbing. Application of Rigid HTHP Pipe-Conveyed Memory Logging Systemin Ultra-Deep Wells[J]. Petroleum Drilling Techniques, 2022, 50(5): 117-124. DOI: 10.11911/syztjs.2022079
    [4]LIN Yongmao, MIAO Weijie, LIU Lin, LI Yongming, QIU Ling. 3D Acid Fracturing Technology in Maokou Formation of Well Jinghe 1 in Southwestern Sichuan[J]. Petroleum Drilling Techniques, 2022, 50(2): 105-112. DOI: 10.11911/syztjs.2022009
    [5]WANG Jianlong, YU Zhiqiang, YUAN Zhuo, FENG Guanxiong, LIU He, GUO Yunpeng. Key Technologies for Deep Shale Gas Horizontal Well Drilling in Luzhou Block of Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(6): 17-22. DOI: 10.11911/syztjs.2021062
    [6]LI Yongzheng, CHEN Tao, JIANG Chuan, DU Jiang. Key Technologies of Directional Drilling in the Moxi-Gaoshiti Area of the Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(2): 26-31. DOI: 10.11911/syztjs.2020103
    [7]CHEN Zhaowei, HUANG Rui, ZENG Bo, SONG Yi, ZHOU Xiaojin. Analysis and Optimization of Construction Parameters for Preventing Casing Deformation in the Changning Shale Gas Block, Sichuan Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 93-100. DOI: 10.11911/syztjs.2020108
    [8]WU Xianzhu. Key Technologies in the Efficient Development of the Weiyuan Shale Gas Reservoir, Sichuan Basin[J]. Petroleum Drilling Techniques, 2019, 47(4): 1-9. DOI: 10.11911/syztjs.2019074
    [9]CHEN Anming, LONG Zhiping, ZHOU Yucang, WANG Yanqi, PENG Xing, CAO Huaqing. Discussion on Low-Cost Drilling Technologies of Normal Pressure Shale Gas in the Outer Margin of the Sichuan Basin[J]. Petroleum Drilling Techniques, 2018, 46(6): 9-14. DOI: 10.11911/syztjs.2018127
    [10]Casing Optimization and Practice at Heba Block of Northeastern Sichuan Basin[J]. Petroleum Drilling Techniques, 2011, 39(1): 73-77. DOI: 10.3969/j.issn.1001-0890.2011.01.016
  • Cited by

    Periodical cited type(10)

    1. 谭忠健,郭康良,吴立伟,张国强,李鸿儒,邓津辉,毕宏日. 渤中19-6构造变质岩潜山优质储集层识别与产能预测. 新疆石油地质. 2025(01): 57-63 .
    2. 肖苏芸. 红星地区茅口组碳酸盐岩储层测井综合评价研究. 江汉石油职工大学学报. 2025(02): 1-4 .
    3. 蔡明杰,罗鑫,陈力力,贺明敏,彭浩,何兵. 万米深井SDCK1井超大尺寸井眼钻井技术. 石油钻探技术. 2024(02): 87-92 . 本站查看
    4. 江青春. 川中-蜀南地区茅口组岩溶储层油气成藏条件与有利区带预测. 大庆石油地质与开发. 2024(04): 48-58 .
    5. 彭军,刘芳兰,张连进,郑斌嵩,唐松,李顺,梁新玉. 川中龙女寺地区中二叠统茅口组储层特征及其主控因素. 石油与天然气地质. 2024(05): 1337-1354 .
    6. 文士豪,李忠诚,田彦玲,白玉玲,刘小红,孙国翔,孙建孟,潘为良. 四川盆地南部地区茅口组碳酸盐岩储层有效性评价及流体识别新方法. 天然气工业. 2024(12): 15-26 .
    7. 杨琴琴,司马立强,王亮,郭宇豪,张浩,温登峰. 四川盆地龙女寺地区龙王庙组碳酸盐岩岩溶地层测井响应特征. 海相油气地质. 2023(01): 11-21 .
    8. 刘帅,王建波. 川东北地区茅口组岩溶储层测井特征及有效性评价. 石化技术. 2023(08): 126-128+238 .
    9. 韩玉娇. 基于AdaBoost机器学习算法的大牛地气田储层流体智能识别. 石油钻探技术. 2022(01): 112-118 . 本站查看
    10. 王雪飞,王素玲,侯峰,王明,李雪梅,孙丹丹. 基于CFD-DEM方法的迂曲裂缝中支撑剂运移关键影响因素分析. 特种油气藏. 2022(06): 150-158 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (594) PDF downloads (80) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return