Citation: | LU Zongyu, ZHENG Junsheng, JIANG Zhenxin, ZHAO Fei. An Experimental Study on Rock Breaking Efficiency with Ultrasonic High-Frequency Rotary-Percussive Drilling Technology[J]. Petroleum Drilling Techniques, 2021, 49(2): 20-25. DOI: 10.11911/syztjs.2020126 |
[1] |
汪海阁,葛云华,石林. 深井超深井钻完井技术现状、挑战和“十三五”发展方向[J]. 天然气工业,2017,37(4):1–8. doi: 10.3787/j.issn.1000-0976.2017.04.001
WANG Haige, GE Yunhua, SHI Lin. Technologies in dep and ultra-deep well drilling: present status, challenges and future trend in the 13th Five-Year Plan period (2016-2020)[J]. Natural Gas Industry, 2017, 37(4): 1–8. doi: 10.3787/j.issn.1000-0976.2017.04.001
|
[2] |
刘书斌,倪红坚,张恒. 轴扭复合冲击工具的研制与应用[J]. 石油钻探技术,2020,48(5):69–76. doi: 10.11911/syztjs.2020072
LIU Shubin, NI Hongjian, ZHANG Heng. Development and applications of a compound axial and torsional impact drilling tool[J]. Petroleum Drilling Techniques, 2020, 48(5): 69–76. doi: 10.11911/syztjs.2020072
|
[3] |
陈杰,牟小军,李汉兴,等. 旋冲振荡钻井提速工具的研制与应用[J]. 断块油气田,2020,27(3):386–389.
CHEN Jie, MOU Xiaojun, LI Hanxing, et al. Development and application of rotary-percussive and oscillatory drilling tool[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 386–389.
|
[4] |
贾红军,王攀,冯伟雄,等. 深井硬岩地层钻井高频低幅扭转振荡耦合冲击器研制与应用[J]. 特种油气藏,2018,25(4):158–163. doi: 10.3969/j.issn.1006-6535.2018.04.032
JIA Hongjun, WANG Pan, FENG Weixiong, et al. Development and application of high-frequency low-torque impactor with torsion-oscillation coupling for drilling of deep and hard formations[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 158–163. doi: 10.3969/j.issn.1006-6535.2018.04.032
|
[5] |
罗恒荣,崔晓杰,谭勇,等. 液力扭转冲击器配合液力加压器的钻井提速技术研究与现场试验[J]. 石油钻探技术,2020,48(3):58–62. doi: 10.11911/syztjs.2020037
LUO Hengrong, CUI Xiaojie, TAN Yong, et al. Research and field test on drilling acceleration technology with hydraulic torsional impactor combined with hydraulic boosters[J]. Petroleum Drilling Techniques, 2020, 48(3): 58–62. doi: 10.11911/syztjs.2020037
|
[6] |
WIERCIGROCH M, WOJEWODA J, KRIVTSOV A M. Dynamics of ultrasonic percussive drilling of hard rocks[J]. Journal of Sound and Vibration, 2003, 280(3/4/5): 739–757.
|
[7] |
PAVLOVSKAIA E, WIERCIGROCH M. Modelling of vibro-impact system driven by beat frequency[J]. International Journal of Mechanical Sciences, 2003, 45(4): 623–641. doi: 10.1016/S0020-7403(03)00113-9
|
[8] |
PAVLOVSKAIA E, WIERCIGROCH M, GREBOGI C. Modeling of an impact system with a drift[J]. Physical Review E, Statistical (Nonlinear and Soft Matter Physics), 2001, 64(5): 056224. doi: 10.1103/PhysRevE.64.056224
|
[9] |
WIERCIGROCH M, NEILSON R D, PLAYER M A. Material removal rate prediction for ultrasonic drilling of hard materials using an impact oscillator approach[J]. Physics Letters A, 1999, 259(2): 91–96. doi: 10.1016/S0375-9601(99)00416-8
|
[10] |
AJIBOSE O K, WIERCIGROCH M, AKISANYA A R. Experimental studies of the resultant contact forces in drillbit–rock interaction[J]. International Journal of Mechanical Sciences, 2015, 91: 3–11. doi: 10.1016/j.ijmecsci.2014.10.007
|
[11] |
AJIBOSE O, WIERCIGROCH M, PAVLOVSKAIA E, et al. Dynamics of a drifting impact oscillator with a conical profile[C]. Symposium on Nonlinear Dynamics for Advanced Technologies and Engineering Design, 2013: 313–321.
|
[12] |
PAVLOVSKAIA E, HENDRY D C, WIERCIGROCH M. Modelling of high frequency vibro-impact drilling[J]. International Journal of Mechanical Sciences, 2015, 91: 110–119. doi: 10.1016/j.ijmecsci.2013.08.009
|
[13] |
AJIBOSE O K, WIERCIGROCH M, PAVLOVSKAIA E, et al. Drifting impact osciiiator with a new modei of the progression phase[J]. Journal of Applied Mechanics, 2012, 79(6): 061007. doi: 10.1115/1.4006379
|
[14] |
尹崧宇,赵大军,周宇,等. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版),2017,47(2):526–533.
YIN Songyu, ZHAO Dajun, ZHOU Yu, et al. Numercial situlation and experiment of the damage process of heterogeneous rock under ultrasonic vibration[J]. Journal of Jilin University (Earth Sicence Edition), 2017, 47(2): 526–533.
|
[15] |
翟国兵. 压力对超声波振动碎岩效果影响规律的研究[D]. 长春: 吉林大学, 2016.
ZHAI Guobing. Study on the effect of the pressure on the ultrasonic vibration in the process of breaking rock[D]. Changchun: Jilin University, 2016.
|
[16] |
孙梓航.超声波振动频率对花岗岩破碎规律影响的研究[D].长春: 吉林大学, 2017.
SUN Zihang. Study on the effect of ultrasonic vibration frequency on granite fracture law[D]. Changchun: Jilin University, 2017.
|
[17] |
黄家根,汪海阁,纪国栋,等. 超声波高频旋冲钻井技术破岩机理研究[J]. 石油钻探技术,2018,46(4):23–29.
HUANG Jiagen, WANG Haige, JI Guodong, et al. The rock breaking mechanism of ultrasonic high frequency rotary-percussive drilling technology[J]. Petroleum Drilling Techniques, 2018, 46(4): 23–29.
|
[18] |
张超,董世民,刘天明,等. 压电陶瓷复合超声换能器径向振动特性的仿真研究[J]. 振动与冲击,2020,39(21):217–225, 240.
ZHANG Chao, DONG Shimin, LIU Tianming, et al. Simulation of radial vibration characteristics of piezoelectric ceramic composite ultrasonic transducer[J]. Journal of Vibration and Shock, 2020, 39(21): 217–225, 240.
|