CAO Huaqing, WU Bo, LONG Zhiping, WANG Dianxue, HUANG Ganting, MA Xiangdong. Key Technologies Involved in Karstic Geothermal Reservoir Drilling in the Beijing-Tianjin-Hebei Region[J]. Petroleum Drilling Techniques, 2021, 49(2): 42-47. DOI: 10.11911/syztjs.2020105
Citation: CAO Huaqing, WU Bo, LONG Zhiping, WANG Dianxue, HUANG Ganting, MA Xiangdong. Key Technologies Involved in Karstic Geothermal Reservoir Drilling in the Beijing-Tianjin-Hebei Region[J]. Petroleum Drilling Techniques, 2021, 49(2): 42-47. DOI: 10.11911/syztjs.2020105

Key Technologies Involved in Karstic Geothermal Reservoir Drilling in the Beijing-Tianjin-Hebei Region

More Information
  • Received Date: February 28, 2020
  • Revised Date: October 20, 2020
  • Available Online: October 29, 2020
  • Technical difficulties are encountered in the drilling of karstic geothermal reservoir in the Beijing-Tianjin-Hebei region. Lost circulation is frequent due to misjudgment of weathering crust, causing burial of drill bits induced by collapse; poor cementation of karstic geothermal reservoirs hinders core recovery; bedrock reservoirs present strong heterogeneity and poor drillability; bit selection requires much efforts and the rate of penetration (ROP) is low. Therefore, X-ray fluorescence (XRF) element logging has been used to accurately assess the weathering crust, so as to avoid lost circulation, and thus increase the well completion rate. The core recovery was improved by selecting JS-6 type fully-sealed pin-hanging multi-purpose coring barrel and an integrated core catcher, and the ROP was raised in bedrock reservoirs through optimal and customized design of bits based on the lithology and drillability of bedrock reservoirs. In order to solve the problems of sticking and lost circulation in the drilling process, corresponding technical measures were introduced, and finally the key technologies for karstic geothermal reservoir drilling in the Beijing-Tianjin-Hebei Region were developed. After applying these technologies, the well completion rate reaches 100% in the Beijing-Tianjin-Hebei Region. In addition, the drilling cycle is shortened by more than 10%, and the drilling cost is reduced by 12%. Research and practice showed that these key technologies can solve the problems of drilling in karstic geothermal reservoirs, and provide technical support for the exploration and development of geothermal resources in this region.
  • [1]
    NB/T 10097—2018地热能术语[S]. 2018-10-29.

    NB/T 10097—2018 Terminology of geothermai energy[S]. 2018-10-29.
    [2]
    张海雄. 雄安新区大王探采1井钻井设计与实践[J]. 科学与技术,2019,36(6):248–249.

    ZHANG Haixiong. Drilling design and drilling practice of well Tancai-1 in Xiongan New Area[J]. Science and Technology, 2019, 36(6): 248–249.
    [3]
    思娜,叶海超,牛新明,等. 油气钻井技术在干热岩开发中的适应性分析[J]. 石油钻探技术,2019,47(4):35–40. doi: 10.11911/syztjs.2019042

    SI Na, YE Haichao, NIU Xinming, et al. Analysis on the adaptability of oil and gas drilling technologies in development for hot dry rocks[J]. Petroleum Drilling Techniques, 2019, 47(4): 35–40. doi: 10.11911/syztjs.2019042
    [4]
    李鹏威,何治亮,罗平,等. 华北北部地区蓟县系高于庄组-雾迷山组白云岩储层特征与形成主控因素[J]. 石油与天然气地质,2020,41(1):21–36.

    LI Pengwei, HE Zhiliang, LUO Ping, et al. Characteristics of and main factors controlling the dolomite reservoir of Gaoyuzhuang-Wumishan Formations in the Jixian System the north of North China[J]. Oil & Gas Geology, 2020, 41(1): 21–36.
    [5]
    陈恭洋, 王志战. 录井地质学[M]. 北京: 石油工业出版社, 2016: 143-145.

    CHEN Gongyang, WANG Zhizhan. Mud logging geology[M]. Beijing: Petroleum Industry Press, 2016: 143-145.
    [6]
    唐诚,王志战,陈明,等. 基于X射线荧光元素录井的深层页岩气精准地质导向技术[J]. 石油钻探技术,2019,47(6):103–110. doi: 10.11911/syztjs.2019135

    TANG Cheng, WANG Zhizhan, CHEN Ming, et al. Accurate geosteering technology for deep shale gas based on XRF element mud logging[J]. Petroleum Drilling Techniques, 2019, 47(6): 103–110. doi: 10.11911/syztjs.2019135
    [7]
    孙祥荣. XRF元素录井在武隆区块页岩气勘探开发中的应用[J]. 录井工程,2017,28(2):33–38. doi: 10.3969/j.issn.1672-9803.2017.02.008

    SUN Xiangrong. Application of XRF element logging to shale gas exploration and development in Wulong Block[J]. Mud Logging Engineering, 2017, 28(2): 33–38. doi: 10.3969/j.issn.1672-9803.2017.02.008
    [8]
    王培义,马鹏鹏,张贤印,等. 中低温地热井钻井完井工艺技术研究与实践[J]. 石油钻探技术,2017,45(4):27–32.

    WANG Peiyi, MA Pengpeng, ZHANG Xianyin, et al. Drilling and completion technologies for of geothermal wells with medium and low temperatures[J]. Petroleum Drilling Techniques, 2017, 45(4): 27–32.
    [9]
    曹华庆,龙志平. 苏北盆地戴南组和阜宁组地层取心关键技术[J]. 石油钻探技术,2019,47(2):28–33. doi: 10.11911/syztjs.2019019

    CAO Huaqing, LONG Zhiping. Key coring technologies for the Dainan Formation and Funing Formation in North Jiangsu Basin[J]. Petroleum Drilling Techniques, 2019, 47(2): 28–33. doi: 10.11911/syztjs.2019019
    [10]
    李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂试验研究[J]. 石油钻探技术,2020,48(2):88–92. doi: 10.11911/syztjs.2020018

    LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88–92. doi: 10.11911/syztjs.2020018
    [11]
    叶顺友,杨灿,王海斌,等. 海南福山凹陷花东1R井干热岩钻井关键技术[J]. 石油钻探技术,2019,47(4):10–16. doi: 10.11911/syztjs.2019030

    YE Shunyou, YANG Can, WANG Haibin, et al. Key drilling technologies for hot rock in Well HD-1R in the Hainan Fushan Sag[J]. Petroleum Drilling Techniques, 2019, 47(4): 10–16. doi: 10.11911/syztjs.2019030
  • Related Articles

    [1]LIU Yongwang, LI Kun, GUAN Zhichuan, BI Chenchao, HUO Yunru, YU Puwei. Research on the Method of Improving ROP and Designing Drill Bits to Mitigate Drillability of Bottomhole Rocks[J]. Petroleum Drilling Techniques, 2024, 52(3): 11-20. DOI: 10.11911/syztjs.2024003
    [2]JI Guodong, CHEN Changchang, GUO Jianhua, XIA Lianbin, LIU Yongwang, SUN Yuqi. Research on Vibration Reduction, Energy Enhancement, and Acceleration Methods for Drilling Strings of 10 000-Meter Deep Wells[J]. Petroleum Drilling Techniques, 2024, 52(2): 100-107. DOI: 10.11911/syztjs.2024038
    [3]CHEN Ganghua, HE Yulong, QIU Zhengsong, GUAN Jian, WANG Xiaojun. Research and Application for the Fine Identification Method of Lost Circulation Characteristics During Drilling[J]. Petroleum Drilling Techniques, 2024, 52(1): 26-31. DOI: 10.11911/syztjs.2023111
    [4]HU Qingfu, XIE Chunlai, TIAN Yudong, WANG Huanwen, GAN Jianguo, LIN Hui. Under-Balanced Drilling Technique Using Nitrogen Injection into Crude Oil in Oilfield A of Iraq Kurdistan[J]. Petroleum Drilling Techniques, 2021, 49(2): 32-36. DOI: 10.11911/syztjs.2021002
    [5]CUI Hailin, ZHOU Yanjun, TANG Honglin, CAO Liming, SUN Ronghua, XIAO Xinlei. Integrated Wellbore Technologies to Enhance the Rate of Penetration for Well Dingye 5[J]. Petroleum Drilling Techniques, 2018, 46(1): 24-29. DOI: 10.11911/syztjs.2018029
    [6]Peng Mingwang, Bai Binzhen, Wang Ke, Li Shaoan, Li Fei. Test of Constant Torque Converter while Drilling in Well TH121125[J]. Petroleum Drilling Techniques, 2014, 42(6): 120-123. DOI: 10.11911/syztjs.201406024
    [7]Li Kezhi, Yan Jizeng. Difficulties and Technical Countermeasures for Improving Penetration Rate of Horizontal Wells in Honghe Oilfield[J]. Petroleum Drilling Techniques, 2014, 42(2): 117-122. DOI: 10.3969/j.issn.1001-0890.2014.02.023
    [8]Zhu Zhongxi, Liu Yingbiao, Lu Zongyu, Xiong Xudong. Increasing the Penetration Rate for Piedmont Belt of Junggar Basin[J]. Petroleum Drilling Techniques, 2013, 41(2): 34-38. DOI: 10.3969/j.issn.1001-0890.2013.02.007
    [9]Jin Yequan, Wang Maolin. PDC Bit Drilling Parameter Optimization Design Integrating Cost and Drilling Rate[J]. Petroleum Drilling Techniques, 2012, 40(5): 13-16. DOI: 10.3969/j.issn.1001-0890.2012.05.003
    [10]Effect of Drilling Fluid Inorganic Salt on Rate of Penetration[J]. Petroleum Drilling Techniques, 2011, 39(4): 48-52. DOI: 10.3969/j.issn.1001-0890.2011.04.010
  • Cited by

    Periodical cited type(13)

    1. 舒沙飞,叶诚. 塔河油田托甫台区块井壁稳定分析与探讨. 西部探矿工程. 2022(06): 74-76 .
    2. 喻化民,薛莉,吴红玲,李海彪,冯丹,杨冀平,鲁娜. 满深区块深井强封堵钻井液技术. 钻井液与完井液. 2022(02): 171-179 .
    3. 胡清富,刘春来,牟少敏,李增乐,司小东. 伊拉克东巴油田Tanuma组泥页岩高效防塌钻井液技术. 石油钻探技术. 2022(04): 76-82 . 本站查看
    4. 张矿生,欧阳勇,谢江锋,陈志勇,黄胜铭,黄维安. 天环坳陷页岩气井井壁失稳机理及防塌钻井液技术研究与应用. 科学技术与工程. 2022(29): 12791-12799 .
    5. 金勇,张强,覃建宇,张永涛,狄明利,单锴. 陆丰古近系复杂地层防塌钻井液技术研究. 当代化工. 2021(06): 1464-1467+1478 .
    6. 陈晓华,邱正松,冯永超,暴丹. 鄂尔多斯盆地富县区块强抑制强封堵防塌钻井液技术. 钻井液与完井液. 2021(04): 462-468 .
    7. 于得水,徐泓,吴修振,陈迎伟,徐金永. 满深1井奥陶系桑塔木组高性能防塌水基钻井液技术. 石油钻探技术. 2020(05): 49-54 . 本站查看
    8. 于雷,冯光通,刘宝锋,张守文. 低活度强封堵钻井液体系在准中2区的研究与应用. 承德石油高等专科学校学报. 2019(02): 18-21+52 .
    9. 张平,贾晓斌,白彬珍,宋海. 塔河油田钻井完井技术进步与展望. 石油钻探技术. 2019(02): 1-8 . 本站查看
    10. 李亚南,于占淼,晁文学,孔华,王安广. 顺北评2H超深小井眼侧钻水平井技术. 石油钻采工艺. 2018(02): 169-173 .
    11. 于雷,张敬辉,李公让,赵怀珍,刘天科. 低活度强抑制封堵钻井液研究与应用. 石油钻探技术. 2018(01): 44-48 . 本站查看
    12. 程善平,鄢家宇,曹鹏,杨美纯,周彪,许潇,汤吉庆,邓伯龙. 塔里木泛哈拉哈塘桑塔木组硬脆性泥岩井壁失稳机理及对策. 钻采工艺. 2018(05): 23-24+41+8 .
    13. 于雷,张敬辉,刘宝锋,孙荣华,季一冰,刘传清. 微裂缝发育泥页岩地层井壁稳定技术研究与应用. 石油钻探技术. 2017(03): 27-31 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (694) PDF downloads (139) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return