CHEN Zuo, ZHANG Baoping, ZHOU Jian, LIU Honglei, ZHOU Linbo, WU Chunfang. Research and Test on the Stimulated Reservoir Volume Technology of Hot Dry Rock[J]. Petroleum Drilling Techniques, 2020, 48(6): 82-87. DOI: 10.11911/syztjs.2020098
Citation: CHEN Zuo, ZHANG Baoping, ZHOU Jian, LIU Honglei, ZHOU Linbo, WU Chunfang. Research and Test on the Stimulated Reservoir Volume Technology of Hot Dry Rock[J]. Petroleum Drilling Techniques, 2020, 48(6): 82-87. DOI: 10.11911/syztjs.2020098

Research and Test on the Stimulated Reservoir Volume Technology of Hot Dry Rock

More Information
  • Received Date: May 12, 2020
  • Revised Date: August 17, 2020
  • Available Online: September 06, 2020
  • Compared with conventional oil and gas resources, the lithology, mechanical properties, development and utilization methods for simulating reservoir volume in hot dry rock are quite different. The fracturing technologies for shale and tight sandstone cannot be directly used in hot dry rocks, and it is necessary to study a fracturing technology that is suitable for the stimulation of hot dry rock. To this end, the mechanical properties of rocks under high-temperature conditions were tested and analyzed by using downhole granite cores and large-size outcrop samples. By adopting high-temperature testing and true tri-axial physical simulation systems, it was possible to simulate and study the morphological characteristics of crack initiation and propagation. The characteristics of brittle-plastic granite at high temperature, rock failure features and the effect of natural fractures on the fracture pressure, propagation path and morphology were analyzed. On this basis, a stimulated reservoir volume technology of low flowrate thermal fracture + gel expanding of cracks + variable flowrate cyclic injection was proposed. A pilot fracturing program at well site was conducted to verify the results of indoor research. Studies suggested that granite had a strong plasticity, poor brittleness, and a large horizontal stress difference at high temperatures. The rock is mainly damaged by tension-shear failure, and natural fractures and temperature difference effect can significantly reduce the fracture pressure, increase the complexity of fractures and achieve a stimulated reservoir volume. The research results can provide a good guidance and best practices for the efficient development of hot dry rock reservoirs.
  • [1]
    陈作, 许国庆, 蒋漫旗. 国内外干热岩压裂技术现状及发展建议[J]. 石油钻探技术, 2019, 47(6): 1–8. doi: 10.11911/syztjs.2019110

    CHEN Zuo, XU Guoqing, JIANG Manqi. The current status and development recommendations for dry hot rock fracturing technologies at home and abroad[J]. Petroleum Drilling Techniques, 2019, 47(6): 1–8. doi: 10.11911/syztjs.2019110
    [2]
    曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术, 2015, 43(2): 1–7.

    ZENG Yijin. Technical progress and thinking for development of hot dry rock (HDR) geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1–7.
    [3]
    廖志杰, 万天丰, 张振国. 增强型地热系统:潜力大、开发难[J]. 地学前缘, 2015, 22(1): 335–344.

    LIAO Zhijie, WAN Tianfeng, ZHANG Zhenguo. The enhanced geothermal system(EGS):huge capacity and difficult exploitation[J]. Earth Science Frontiers, 2015, 22(1): 335–344.
    [4]
    翟海珍, 苏正, 吴能友. 苏尔士增强型地热系统的开发经验及对我国地热开发的启示[J]. 新能源进展, 2014, 2(4): 286–294. doi: 10.3969/j.issn.2095-560X.2014.04.008

    ZHAI Haizhen, SU Zheng, WU Nengyou. Development experiences of the Soultz enhanced geothermal systems and inspirations for geothermal development of China[J]. Advances in New and Renewable Energy, 2014, 2(4): 286–294. doi: 10.3969/j.issn.2095-560X.2014.04.008
    [5]
    付亚荣, 李明磊, 王树义, 等. 干热岩勘探开发现状及前景[J]. 石油钻采工艺, 2018, 40(4): 526–540.

    FU Yarong, LI Minglei, WANG Shuyi, et al. Present situation and prospect of hot dry rock exploration and development[J]. Oil Drilling & Production Technology, 2018, 40(4): 526–540.
    [6]
    FRASH L, GUTIERREZ M, HAMPTON J. Scale model simulation of hydraulic fracturing for EGS reservoir creation using a heated true-triaxial apparatus[R]. ISRM-ICHF-2013-013, 2013.
    [7]
    赵阳升. 高温岩体地热开发的岩石力学问题: 21世纪新兴岩石力学与工程发展展望: 中国岩石力学与工程学会第六次学术大会论文集[C]. 北京: 中国科学技术出版社, 2000: 71–74.

    ZHAO Yangsheng. The problem of rock mechanics in heat extraction in hot dry rock: 21st advancing of rock mechanics & rock engineering: Proceedings of the 6th academic conference of the Chinese Society of Rock Mechanics and Engineering[C]. Beijing: China Science and Technology Press, 2000: 71–74.
    [8]
    万志军, 赵阳升, 董付科, 等. 高温及三轴应力下花岗岩体力学特性的实验研究[J]. 岩石力学与工程学报, 2008, 27(1): 72–77. doi: 10.3321/j.issn:1000-6915.2008.01.011

    WAN Zhijun, ZHAO Yangsheng, DONG Fuke, et al. Experimental study on mechanical characteristics of granite under high temperatures and triaxial stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 72–77. doi: 10.3321/j.issn:1000-6915.2008.01.011
    [9]
    杜守继, 刘华, 职洪涛, 等. 高温后花岗岩力学性能的试验研究[J]. 岩石力学与工程学报, 2004, 23(14): 2359–2364. doi: 10.3321/j.issn:1000-6915.2004.14.010

    DU Shouji, LIU Hua, ZHI Hongtao, et al. Testing study on mechanical properties of post-high-temperature granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14): 2359–2364. doi: 10.3321/j.issn:1000-6915.2004.14.010
    [10]
    郤保平, 赵阳升. 600 ℃内高温状态花岗岩遇水冷却后力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(5): 892–898.

    XI Baoping, ZHAO Yangsheng. Experimental research on mechanics properties of water-cooled granite under high temperatures within 600 ℃[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 892–898.
    [11]
    TOMAC I, GUTIERREZ M. Micro-mechanical of hydro-thermo-mechanical fracture propagation in granite[R]. ARMA-2014-7148, 2014.
    [12]
    RIAHI A, DAMJANAC B, FURTNEY J. Thermo-hydro-mechanical numerical modeling of stimulation and heat production of EGS reservoirs[R]. ARMA-2014-7741, 2014.
    [13]
    RUTQVIST J, DOBSON P F, JEANNE P, et al. Modeling and monitoring of deep injection at the Northwest Geysers EGS Demonstration, California[R]. ARMA-2013-307, 2013.
    [14]
    CLADOUHOS T T, PETTY S, NORDIN Y, et al. Improving geothermal project economics with multi-zone stimulation: results from the Newberry Volcano EGS Demonstration[R]. ARMA-2013-484, 2013.
    [15]
    谢文苹, 路睿, 张盛生, 等. 青海共和盆地干热岩勘查进展及开发技术探讨[J]. 石油钻探技术, 2020, 48(3): 77–84. doi: 10.11911/syztjs.2020042

    XIE Wenping, LU Rui, ZHANG Shengsheng, et al. Progress in hot dry rock exploration and a discussion on development technology in the Gonghe Basin of Qinghai[J]. Petroleum Drilling Techniques, 2020, 48(3): 77–84. doi: 10.11911/syztjs.2020042
    [16]
    陈作, 薛承瑾, 蒋廷学, 等. 页岩气井体积压裂技术在我国的应用建议[J]. 天然气工业, 2010, 30(10): 30–32. doi: 10.3787/j.issn.1000-0976.2010.10.007

    CHEN Zuo, XUE Chengjin, JIANG Tingxue, et al. Proposals for the application of fracturing by stimulated reservoir volume (SRV) in shale gas wells in China[J]. Natural Gas Industry, 2010, 30(10): 30–32. doi: 10.3787/j.issn.1000-0976.2010.10.007
    [17]
    陶亮, 郭建春, 李凌铎, 等. 致密油藏体积压裂水平井产能评价新方法[J]. 特种油气藏, 2019, 26(3): 89–93. doi: 10.3969/j.issn.1006-6535.2019.03.016

    TAO Liang, GUO Jianchun, LI Lingduo, et al. New productivity evaluation of horizontal well with volume-fracturing in tight oil reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 89–93. doi: 10.3969/j.issn.1006-6535.2019.03.016
  • Related Articles

    [1]LYU Zhenhu, ZHANG Yupeng, SHI Shanzhi, XI Yue, DONG Jingfeng. Downhole Behavior Characteristics of Horizontal Well Volume Fracturing in High-Speed Erosion Casing[J]. Petroleum Drilling Techniques, 2024, 52(6): 86-96. DOI: 10.11911/syztjs.2024072
    [2]ZHANG Hongfeng. Hydraulic Shaping Technology of Deformed Casing after Fracturing in Horizontal Shale Oil Wells[J]. Petroleum Drilling Techniques, 2023, 51(5): 173-178. DOI: 10.11911/syztjs.2023055
    [3]MU Lijun, BAI Jie, QI Yin, XUE Xiaojia. Geological Engineering Integrated Fracturing Technology for Qingcheng Interlayer Shale Oil[J]. Petroleum Drilling Techniques, 2023, 51(5): 33-41. DOI: 10.11911/syztjs.2023079
    [4]ZHAO Zhenfeng, WANG Wenxiong, XU Xiaochen, YE Liang, LI Ming. Hydraulic Fracturing Technology for Deep Marine Shale Gas in Ordos Basin[J]. Petroleum Drilling Techniques, 2023, 51(5): 23-32. DOI: 10.11911/syztjs.2023081
    [5]ZHANG Yanjun, GE Hongkui, XU Tianlu, HUANG Wenqiang, ZENG Hui, CHEN Hao. Experimental Study on Silt Distribution Law at the Front end of Fractures in Volume Fracturing[J]. Petroleum Drilling Techniques, 2021, 49(3): 105-110. DOI: 10.11911/syztjs.2021065
    [6]ZHOU Jian, ZENG Yijin, CHEN Zuo, ZHANG Baoping, XU Shengqiang. Research on Fracture Mapping with Surface Tiltmeters for “Hot Dry Rock” Stimulation in Gonghe Basin, Qinghai[J]. Petroleum Drilling Techniques, 2021, 49(1): 88-92. DOI: 10.11911/syztjs.2020139
    [7]LI Xianwen, LIU Shun, CHEN Qiang, SU Yuliang, SHENG Guanglong. An Evaluation of the Stimulation Effect of Horizontal Well Volumetric Fracturing in Tight Reservoirs with Complex Fracture Networks[J]. Petroleum Drilling Techniques, 2019, 47(6): 73-82. DOI: 10.11911/syztjs.2019126
    [8]JIA Guangliang, SHAO Tong, YIN Xiaoxia, JIANG Shangming, XU Wensi, WANG Yuzhu. Volumetric Fracturing with Mixed Water in Tight Gas Reservoirsin the Hangjinqi Block[J]. Petroleum Drilling Techniques, 2019, 47(2): 87-92. DOI: 10.11911/syztjs.2018143
    [9]TIAN Linhai, QU Gang, LEI Ming, YU Decheng, ZHANG Wei. Discussion of Frac Interferences during Volumetric Fracturing in Drilling Operation of Ma 18 Well Area in Mahu Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(1): 20-24. DOI: 10.11911/syztjs.2019023
    [10]Zhao Chongzhen. Network Fracturing Technology Applied to Xu 5 Tight Gas Reservoirs in the Xinchang Gas Field[J]. Petroleum Drilling Techniques, 2015, 43(6): 70-75. DOI: 10.11911/syztjs.201506013
  • Cited by

    Periodical cited type(5)

    1. 戴一凡,侯冰,廖志豪. 基于相场法的深层干热岩储层水力压裂模拟研究. 石油钻探技术. 2024(02): 229-235 . 本站查看
    2. 陈作,赵乐坤,卫然,刘星. 深层地热热储改造技术进展与发展建议. 石油钻探技术. 2024(06): 10-15 . 本站查看
    3. 廖华林,尹璐,孙凤,魏俊,颜辉,滕志想. 温度及冷却方式对花岗岩力学参数影响的实验研究. 石油钻探技术. 2024(06): 23-29 . 本站查看
    4. 文冬光,张二勇,王贵玲,张林友,王璜,张森琦,叶成明,王稳石,金显鹏,刘东林,贾小丰,李胜涛,吴海东,连晟,冯庆达. 干热岩勘查开发进展及展望. 水文地质工程地质. 2023(04): 1-13 .
    5. 路保平. 中国石化石油工程技术新进展与发展建议. 石油钻探技术. 2021(01): 1-10 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (544) PDF downloads (109) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return