LI Wenzhe, ZHONG Chengxu, JIANG Xuemei, LI Zhengtao, CAO Shiping, WU Shuang. Study of the Rheological Properties of High-Density Oil-Based Drilling Fluid Considering Wall Slip Effect[J]. Petroleum Drilling Techniques, 2020, 48(6): 28-32. DOI: 10.11911/syztjs.2020085
Citation: LI Wenzhe, ZHONG Chengxu, JIANG Xuemei, LI Zhengtao, CAO Shiping, WU Shuang. Study of the Rheological Properties of High-Density Oil-Based Drilling Fluid Considering Wall Slip Effect[J]. Petroleum Drilling Techniques, 2020, 48(6): 28-32. DOI: 10.11911/syztjs.2020085

Study of the Rheological Properties of High-Density Oil-Based Drilling Fluid Considering Wall Slip Effect

More Information
  • Received Date: February 17, 2020
  • Revised Date: June 22, 2020
  • Available Online: July 30, 2020
  • Wall slip effect seriously affects the accurate measurement of the rheological properties of high-density oil-based drilling fluids, and it needs careful detection and correction. A correction method for the wall slip effect during the measurement of the rheological properties of high-density oil-based drilling fluids was established based on the Tikhonov regularization method. Rheological property measurement experiments of high-density oil-based drilling fluids in deep shale gas wells considering wall slip effect were carried out using a six-speed rotational viscometer, and the wall slip characteristics of high-density oil-based drilling fluids were analyzed. The rheological model was optimized and the rheological parameters were calculated. The calculation results demonstrate that, when compared with the rheological parameters before correction, the dynamic shear force of high-density oil-based drilling fluids in deep shale gas wells is reduced after correction, while the liquidity index is increased to nearly 1.00. The results demonstrate the real rheological properties can be expressed by Bingham model. When the wall shear stress is higher than the critical shear stress, the slip velocity will increase exponentially with increasing wall shear stress.The results show that a slip effect exists during the measurement of the rheological properties of high-density oil-based drilling fluids. It demonstrates, too, that the rheological model and rheological parameters before and after slip correction are significantly different, and the influence of slip effect should be eliminated for accurate measurement.
  • [1]
    李茂森, 刘政, 胡嘉. 高密度油基钻井液在长宁—威远区块页岩气水平井中的应用[J]. 天然气勘探与开发, 2017, 40(1): 88–92.

    LI Maosen, LIU Zheng, HU Jia. Application of high density oil-based drilling fluid in shale gas horizontal wells of Changning-Weiyuan Bolck[J]. Natural Gas Exploration and Deveopment, 2017, 40(1): 88–92.
    [2]
    凡帆, 王京光, 蔺文洁. 长宁区块页岩气水平井无土相油基钻井液技术[J]. 石油钻探技术, 2016, 44(5): 34–39.

    FAN Fan, WANG Jingguang, LIN Wenjie. Clay-free oil based drilling fluid technology for shale gas horizontal wells in the Changning Block[J]. Petroleum Drilling Techniques, 2016, 44(5): 34–39.
    [3]
    陈在君. 高密度无土相油基钻井液研究及在四川页岩气水平井的应用[J]. 钻采工艺, 2015, 38(5): 70–72. doi: 10.3969/J.ISSN.1006-768X.2015.05.22

    CHEN Zaijun. Development of high density clay-free oil-based drilling fluid and its application in Sichuan shale gas horizontal well[J]. Drilling & Production Technology, 2015, 38(5): 70–72. doi: 10.3969/J.ISSN.1006-768X.2015.05.22
    [4]
    何涛, 李茂森, 杨兰平, 等. 油基钻井液在威远地区页岩气水平井中的应用[J]. 钻井液与完井液, 2012, 29(3): 1–5. doi: 10.3969/j.issn.1001-5620.2012.03.001

    HE Tao, LI Maosen, YANG Lanping, et al. Application of oil-based drilling fluid in shale gas horizontal well in District of Weiyuan[J]. Drilling Fluid & Completion Fluid, 2012, 29(3): 1–5. doi: 10.3969/j.issn.1001-5620.2012.03.001
    [5]
    樊好福, 臧艳彬, 张金成, 等. 深层页岩气钻井技术难点与对策[J]. 钻采工艺, 2019, 42(3): 20–23. doi: 10.3969/J.ISSN.1006-768X.2019.03.06

    FAN Haofu, ZANG Yanbin, ZHANG Jincheng, et al. Technical difficulties and countermeaures of deep shale gas drilling[J]. Drilling & Production Technology, 2019, 42(3): 20–23. doi: 10.3969/J.ISSN.1006-768X.2019.03.06
    [6]
    臧艳彬. 川东南地区深层页岩气钻井关键技术[J]. 石油钻探技术, 2018, 46(3): 7–12.

    ZANG Yanbin. Key drilling technology for deep shale gas reservoirs in the Southeastern Sichuan Region[J]. Petroleum Drilling Techniques, 2018, 46(3): 7–12.
    [7]
    DOKHANI V, MA Yue, YU Mengjiao. Determination of equivalent circulating density of drilling fluids in deepwater drilling[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1096–1105. doi: 10.1016/j.jngse.2016.08.009
    [8]
    FERNANDES R R, TUREZO G, ANDRADE D E V, et al. Are the rheological properties of water-based and synthetic drilling fluids obtained by the Fann 35A viscometer reliable?[J]. Journal of Petroleum Science and Engineering, 2019, 177: 872–879. doi: 10.1016/j.petrol.2019.02.063
    [9]
    MOONEY M. Explicit formulas for slip and fluidity[J]. Journal of Rheology, 1931, 2(2): 210–222. doi: 10.1122/1.2116364
    [10]
    马修元, 段钰锋, 刘猛, 等. 水焦浆的流变特性与壁面滑移效应[J]. 化工学报, 2012, 63(1): 51–58. doi: 10.3969/j.issn.0438-1157.2012.01.007

    MA Xiuyuan, DUAN Yufeng, LIU Meng, et al. Wall slip behavior and rheological characteristics of coke/water slurry[J]. Journal of Chemical Industry and Engineering, 2012, 63(1): 51–58. doi: 10.3969/j.issn.0438-1157.2012.01.007
    [11]
    MA Xiuyuan, DUAN Yufeng, LI Huafeng. Wall slip and rheological behavior of petroleum-coke sludge slurries flowing in pipelines[J]. Powder Technology, 2012, 230: 127–133. doi: 10.1016/j.powtec.2012.07.019
    [12]
    BRUNN P, MULLER M, BSCHORER S. Slip of complex fluids in viscometry[J]. Rheologica Acta, 1996, 35(3): 242–251. doi: 10.1007/BF00366911
    [13]
    王贵, 蒲晓林, 罗兴树, 等. 考虑滑移效应的高密度水基钻井液流变特性[J]. 石油学报, 2011, 32(3): 539–542. doi: 10.7623/syxb201103028

    WANG Gui, PU Xiaolin, LUO Xingshu, et al. Rheological behaviors of the high-density water-based drilling fluid in consideration of slip effect[J]. Acta Petrolei Sinica, 2011, 32(3): 539–542. doi: 10.7623/syxb201103028
    [14]
    YOSHIMURA A S, PRUD’HOMME R K. Viscosity measurements in the presence of wall slip in capillary, Couette, and parallel-disk geometries[J]. SPE Reservoir Engineering, 1988, 3(2): 735–742. doi: 10.2118/14696-PA
    [15]
    de HOOG F R, ANDERSSEN R S. Regularization of first kind integral equations with application to Couette viscometry[J]. Journal of Integral Equations and Applications, 2006, 18(2): 249–265. doi: 10.1216/jiea/1181075381
    [16]
    YEOW Y L, KO W C, TANG P P P. Solving the inverse problem of Couette viscometry by Tikhonov regularization[J]. Journal of Rheology, 2000, 44(6): 1335–1351. doi: 10.1122/1.1308520
    [17]
    WEESE J. A regularization method for nonlinear ill-posed problems[J]. Computer Physics Communications, 1993, 77(3): 429–440. doi: 10.1016/0010-4655(93)90187-H
    [18]
    WANG Gui, DU Hui, GUO Boyun. Determination of viscosity and wall slip behavior of a polymer-gel used for leakage control from Couette viscometry data[J]. Journal of Energy Resources Technology, 2018, 140(3): 032910. doi: 10.1115/1.4038384
    [19]
    YEOW Y L, CHOON B, KARNIAWAN L, et al. Obtaining the shear rate function and the slip velocity function from Couette viscometry data[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 124(1): 43–49.
    [20]
    LEONG Y-K, YEOW Y L. Obtaining the shear stress shear rate relationship and yield stress of liquid foods from Couette viscometry data[J]. Rheologica Acta, 2003, 42(4): 365–371. doi: 10.1007/s00397-002-0283-6
  • Related Articles

    [1]DIAO Binbin, GAO Deli, LIU Zhe, WU Huapeng. Well Depth Measured with MWD Error Correction and Calculation of Borehole Position Uncertainty[J]. Petroleum Drilling Techniques, 2024, 52(2): 181-186. DOI: 10.11911/syztjs.2024043
    [2]YUAN Jianwei, LIU Meijia, LI Chao, WU Chunxin, MA Dong. Research on Boundary Correction Coefficient of Horizontal Wells in Narrow Channel Reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(1): 86-90. DOI: 10.11911/syztjs.2022056
    [3]LI Hongqiang, WANG Ruihe. Research on Environmental Correction Method of Measurement Results from Near-Bit Gamma Imagers[J]. Petroleum Drilling Techniques, 2021, 49(3): 142-150. DOI: 10.11911/syztjs.2021024
    [4]ZHANG Guodong, LU Fawei, CHEN Bo, LUO Jian, HU Wenliang, HE Yuchun. A Fluid Properties while Drilling Rapid Identification Method under Oil-Based Drilling Fluid Conditions for Low Porosity and Low Permeability Reservoirs in the Xihu Sag[J]. Petroleum Drilling Techniques, 2019, 47(5): 116-120. DOI: 10.11911/syztjs.2019100
    [5]ZHANG Wei, LU Baoping, WANG Baoliang, LI Xin, LU Junyi, JI Haifeng. The Resistivity Imaging LWD Method Suitable for Oil-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2019, 47(1): 112-117. DOI: 10.11911/syztjs.2019009
    [6]YU Hongmin, WANG Youqi, NIE Jun, LYU Chengyuan, CUI Wenfu, ZHANG Li. Study and Application of a Correction Method for the Relative Permeability Curve of a High Water Injection Multiple[J]. Petroleum Drilling Techniques, 2018, 46(4): 104-108. DOI: 10.11911/syztjs.2018080
    [7]WANG Hanwei, XIA Hongquan, CHEN Yu, ZHAO Hao. Impacts of Environmental Factors on LWD Curves and Calibration Techniques in Horizontal Shale Gas Wells[J]. Petroleum Drilling Techniques, 2017, 45(6): 116-122. DOI: 10.11911/syztjs.201706021
    [8]FAN Guangdi, PU Wenxue, ZHAO Guoshan, HUANG Genlu. Correction Methods for Axial Magnetic Interference of the Magnetic Inclinometer while Drilling[J]. Petroleum Drilling Techniques, 2017, 45(4): 121-126. DOI: 10.11911/syztjs.201704021
    [9]LU Baoping, BAO Hongzhi, YU Fu. A Pore Pressure Calculating Method for Carbonate Formations Based on Fluid Velocity[J]. Petroleum Drilling Techniques, 2017, 45(3): 1-7. DOI: 10.11911/syztjs.201703001
    [10]Xu Haodong, Huang Genlu, Zhang Ran, Wei Hongshu, Cheng Fengrui. Method of Magnetic Interference Correction in Survey with Magnetic MWD[J]. Petroleum Drilling Techniques, 2014, 42(2): 102-106. DOI: 10.3969/j.issn.1001-0890.2014.02.020
  • Cited by

    Periodical cited type(7)

    1. 杨东升,谢坤,殷庆国,卢祥国,肖京池,沈伟军. 边底水气藏水侵规律研究现状与展望. 天然气地球科学. 2024(07): 1304-1322 .
    2. 叶君香,许永利,郭中外,沈卫英. 壁面滑移速度对滑动轴承性能的影响分析. 汽车零部件. 2023(05): 8-12 .
    3. 张鼎,唐培林,黎亮,周素林,张琳婧,张益臣,宋英发,方申文. Winsor Ⅰ微乳液+臭氧氧化联合处理油基岩屑研究. 油气田环境保护. 2023(03): 27-32 .
    4. 张鼎,唐培林,张琳婧,张益臣,宋英发,方申文. 疏水性低共熔溶剂萃取油基岩屑的工艺优化. 油田化学. 2022(04): 717-721 .
    5. 张洁,汤明,蒋振新,甘一风,曾德智. 椭圆井眼同心环空赫巴流体流动规律研究及压降计算简化模型. 特种油气藏. 2021(02): 156-162 .
    6. 黄乘升. 油基钻井液在威远地区页岩气水平井中的应用. 化学工程与装备. 2021(09): 47-48+44 .
    7. 张鼎,唐培林,张琳婧,张益臣,宋英发,方申文. 基础油在岩屑表面吸附行为研究. 油气田环境保护. 2021(06): 33-37 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (706) PDF downloads (89) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return