LI Erdang, HAN Zuowei, GAO Xiangrui, MA Mingyu, QIU Junchao. Research on the Microscopic Pore Producing Characteristics of Tight Reservoirs Displaced by Different Gas Injection Media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85-91. DOI: 10.11911/syztjs.2020078
Citation: LI Erdang, HAN Zuowei, GAO Xiangrui, MA Mingyu, QIU Junchao. Research on the Microscopic Pore Producing Characteristics of Tight Reservoirs Displaced by Different Gas Injection Media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85-91. DOI: 10.11911/syztjs.2020078

Research on the Microscopic Pore Producing Characteristics of Tight Reservoirs Displaced by Different Gas Injection Media

More Information
  • Received Date: November 26, 2019
  • Revised Date: June 11, 2020
  • Available Online: July 01, 2020
  • In order to provide clarity in the microscopic oil displacement mechanisms of tight reservoirs displaced by different gas injection media, core displacement experiments of N2 and CO2 injection were carried out respectively based on the principle of NMR T2 spectrum test. The microscopic displacement mechanisms of N2 immiscible flooding and CO2 miscible flooding were studied at the microscopic pore scale, and the oil production from pores with different pore sizes during displacement was evaluated. The results show that final recovery percent from N2 immiscible flooding and CO2 miscible flooding has little difference. The N2 flooding process can be divided into three stages: the non-breakthrough stage, the early breakthrough stage and the mid-late breakthrough stage. The recovery percent from small pores is higher than that from large pores. However, the oil recovery percent from large pores is greatly improved in CO2 miscible flooding, while it is relatively low from small pores. The distribution of microscopic pore structure is the main cause for the difference in recovery percent between large and small pores in the process of N2 and CO2 flooding. The results show that the development effect of N2 flooding in tight reservoirs is better than that of CO2 flooding, which provides a theoretical basis for the development of Chang 6 reservoir by N2 flooding in Ansai Oilfield .
  • [1]
    邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173–187. doi: 10.7623/syxb201202001

    ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulation: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173–187. doi: 10.7623/syxb201202001
    [2]
    杨华,李士祥,刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1–11. doi: 10.7623/syxb201301001

    YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1–11. doi: 10.7623/syxb201301001
    [3]
    唐人选,梁珀,吴公益,等. 苏北复杂断块油藏二氧化碳驱油效果影响因素分析及认识[J]. 石油钻探技术, 2020, 48(1): 98–103. doi: 10.11911/syztjs.2019125

    TANG Renxuan, LIANG Po, WU Gongyi, et al. Analyzing and understanding the influencing factors of CO2 flooding in the Subei complex fault block reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(1): 98–103. doi: 10.11911/syztjs.2019125
    [4]
    李忠兴,屈雪峰,刘万涛,等. 鄂尔多斯盆地长7段致密油合理开发方式探讨[J]. 石油勘探与开发, 2015, 42(2): 217–225. doi: 10.11698/PED.2015.02.11

    LI Zhongxing, QU Xuefeng, LIU Wantao, et al. Development modes of Triassic Yanchang Formation Chang 7 Member tight oil in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 217–225. doi: 10.11698/PED.2015.02.11
    [5]
    WEI Bing, LU Laiming, PU Wanfen, et al. Production dynamics of CO2 cyclic injection and CO2 sequestration in tight porous media of Lucaogou Formation in Jimsar Sag[J]. Journal of Petroleum Science and Engineer, 2017, 157: 1084–1094. doi: 10.1016/j.petrol.2017.08.023
    [6]
    QIAN Kun, YANG Shenglai, DOU Hongen, et al. Experimental investigation on microscopic residual oil distribution during CO2 huff-and-puff process in tight oil reservoirs[J]. Energies, 2018, 11(10): 2843. doi: 10.3390/en11102843
    [7]
    张戈,王梦涵,焦红岩,等. 断块油藏氮气吞吐筛选标准[J]. 断块油气田, 2019, 26(6): 766–770.

    ZHANG Ge, WANG Menghan, JIAO Hongyan, et al. Criteria for nitrogen stimulation selection of fault block reservoir[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 766–770.
    [8]
    马铨峥,杨胜来,陈浩,等. 致密油储集层CO2吞吐效果及影响因素分析: 以新疆吉木萨尔凹陷芦草沟组为例[J]. 石油科学通报, 2018, 3(4): 434–445.

    MA Quanzheng, YANG Shenglai, CHEN Hao, et al. Effect and influencing factors of CO2 huff and puff in a tight oil reservoir: taking the Lucaogou Formation in the Xinjiang Jimsar Sag as an exam-ple[J]. Petroleum Science Bulletin, 2018, 3(4): 434–445.
    [9]
    刘中云,赵海洋,王建海,等. 塔河油田溶洞型碳酸盐岩油藏注入氮气垂向分异速度及横向波及范围研究[J]. 石油钻探技术, 2019, 47(4): 75–82. doi: 10.11911/syztjs.2019092

    LIU Zhongyun, ZHAO Haiyang, WANG Jianhai, et al. Study on vertical different velocity and transverse scope of nitrogen injection in carbonate reservoirs with fractures and vugs in the Tahe Oil-field[J]. Petroleum Drilling Techniques, 2019, 47(4): 75–82. doi: 10.11911/syztjs.2019092
    [10]
    邓瑞健,田巍,李中超,等. 二氧化碳驱动用储层微观界限研究[J]. 特种油气藏, 2019, 26(3): 133–137. doi: 10.3969/j.issn.1006-6535.2019.03.025

    DENG Ruijian, TIAN Wei, LI Zhongchao, et al. Microscopic limits of reservoir producing for carbon dioxide flooding[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 133–137. doi: 10.3969/j.issn.1006-6535.2019.03.025
    [11]
    胡伟,吕成远,王锐,等. 水驱转CO2混相驱渗流机理及传质特征[J]. 石油学报, 2018, 39(2): 201–207. doi: 10.7623/syxb201802008

    HU Wei, LYU Chengyuan, WANG Rui, et al. Porous flow mechanism and mass transfer characteristics of CO2 miscible flooding after water flooding[J]. Acta Petrolei Sinica, 2018, 39(2): 201–207. doi: 10.7623/syxb201802008
    [12]
    杨胜来,杭达震,孙蓉,等. CO2对原油的抽提及其对原油黏度的影响[J]. 中国石油大学学报(自然科学版), 2009, 33(4): 85–88.

    YANG Shenglai, HANG Dazhen, SUN Rong, et al. CO2 extraction for crude oil and its effect on crude oil viscosity[J]. Journal of China University of Petroleum(Edition of Natural Science), 2009, 33(4): 85–88.
    [13]
    陈兴隆,秦积舜,张可. CO2与原油混相及非混相条件下渗流机理差异[J]. 特种油气藏, 2009, 16(3): 77–81. doi: 10.3969/j.issn.1006-6535.2009.03.023

    CHEN Xinglong, QIN Jishun, ZHANG Ke. Difference of flowing mechanism in miscible and immiscible phase of CO2 and crude oil[J]. Special Oil & Gas Reservoirs, 2009, 16(3): 77–81. doi: 10.3969/j.issn.1006-6535.2009.03.023
    [14]
    PAPADIMITRIOU N I, ROMANOS G E, CHARALAMBOPOU-LOU G C, et al. Experimental investigation of asphaltene deposition mechanism during oil flow in core samples[J]. Journal of Petroleum Science and Engineering, 2007, 57(3/4): 281–293.
    [15]
    WANG Xiaoqi, GU Yongan. Oil recovery and permeability reduction of a tight sandstone reservoir in immiscible and miscible CO2 flooding process[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 2388–2399.
    [16]
    郎东江,伦增珉,王海涛,等. 致密砂岩储层CO2驱油特征的核磁共振试验研究[J]. CT理论与应用研究, 2016, 25(2): 141–147.

    LANG Dongjiang, LUN Zengmin, WANG Haitao, et al. Study of displacement characteristics of CO2 in tight sandstone reservoir by nuclear magnetic resonance[J]. CT Theory and Application, 2016, 25(2): 141–147.
    [17]
    代全齐,罗群,张晨,等. 基于核磁共振新参数的致密油砂岩储层孔隙结构特征: 以鄂尔多斯盆地延长组7段为例[J]. 石油学报, 2016, 37(7): 887–897. doi: 10.7623/syxb201607007

    DAI Quanqi, LUO Qun, ZHANG Chen, et al. Pore structure characteristics of tight-oil sandstone reservoir based on a new parameter measured by NMR experiment: a case study of seventh member in Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2016, 37(7): 887–897. doi: 10.7623/syxb201607007
    [18]
    WEI Bing, ZHANG Xiang, WU Runnan, et al. Pore-scale monitoring of CO2 and N2 flooding processes in a tight formation under reservoir conditions using nuclear magnetic resonance (NMR): a case study[J]. Fuel, 2019, 246: 34–41. doi: 10.1016/j.fuel.2019.02.103
    [19]
    蒲万芬,王崇阳,李一波,等. 致密油储层CO2驱核磁共振试验研究[J]. 科学技术与工程, 2017, 17(7): 30–35. doi: 10.3969/j.issn.1671-1815.2017.07.005

    PU Wanfen, WANG Chongyang, LI Yibo, et al. Nuclear magnetic resonance experimental study of CO2 flooding in tight reservoir[J]. Science Technology and Engineering, 2017, 17(7): 30–35. doi: 10.3969/j.issn.1671-1815.2017.07.005
    [20]
    秦积舜,张可,陈兴隆. 高含水后CO2驱油机理的探讨[J]. 石油学报, 2010, 31(5): 797–800. doi: 10.7623/syxb201005016

    QIN Jishun, ZHANG Ke, CHEN Xinglong. Mechanism of the CO2 flooding as reservoirs containing high water[J]. Acta Petrolei Sinica, 2010, 31(5): 797–800. doi: 10.7623/syxb201005016
  • Cited by

    Periodical cited type(18)

    1. 钟锋,侯博,孙欢,朱明明,刘振,王步宽,李金爽. 苏里格区域抗高温滤失型纤维堵漏技术研究与应用. 石油化工应用. 2024(05): 79-85 .
    2. 郭明红,文飞,常春来,谭春,崔节磊,钟新新. 高滤失固结堵漏技术在足203H5平台的应用. 石油地质与工程. 2024(03): 108-112 .
    3. 王立锋. 查302井分级承压固结堵漏技术. 钻井液与完井液. 2024(05): 617-621 .
    4. 欧翔,谭凯,周楚翔. 深层钻井堵漏材料的研究现状与发展思考. 材料导报. 2024(S2): 615-620 .
    5. 刘金华. 顺北油气田二叠系火成岩漏失分析及堵漏技术. 钻探工程. 2023(02): 64-70 .
    6. 李天乐,庞少聪,赵洛,杨超岚,安玉秀. 近十年纳微米堵漏剂研究进展. 应用化工. 2023(07): 2107-2111 .
    7. 彭力,计磊,邱正松,臧晓宇,张现斌. 新型抗高温凝胶堵漏剂的制备与评价. 能源化工. 2023(05): 64-69 .
    8. 杜昊,李丽华,马诚,杨超,王晨,张宏. 架桥封堵-热致固结高温堵漏体系研究. 辽宁石油化工大学学报. 2023(06): 17-21 .
    9. 王文刚,胡大梁,欧彪,房舟,刘磊. 井研–犍为地区缝洞型复杂地层钻井关键技术. 石油钻探技术. 2022(02): 58-63 . 本站查看
    10. 王兆永. 超高温高密度防漏堵漏水泥浆技术. 石油化工应用. 2022(12): 38-41+47 .
    11. 方俊伟,贾晓斌,刘文堂,乐明. ZYSD高失水固结堵漏技术在顺北5-9井中的应用. 钻井液与完井液. 2021(01): 74-78 .
    12. 赵洪波,单文军,朱迪斯,岳伟民,何远信. 裂缝性地层漏失机理及堵漏材料新进展. 油田化学. 2021(04): 740-746 .
    13. 杨仲涵,罗鸣,陈江华,许发宾,徐靖. 莺歌海盆地超高温高压井挤水泥承压堵漏技术. 石油钻探技术. 2020(03): 47-51 . 本站查看
    14. 赵福豪,黄维安. 钻井液防漏堵漏材料研究进展. 复杂油气藏. 2020(04): 96-100 .
    15. 邹春,兰凯,王爱宽,刘香峰,孔华. 涪陵页岩气井水平段一趟钻技术实践与认识. 内蒙古石油化工. 2019(06): 64-67 .
    16. 樊好福. 页岩气钻完井配套技术集成研究与应用. 探矿工程(岩土钻掘工程). 2019(08): 15-22 .
    17. 王涛,赵兵,曲占庆,郭天魁,罗攀登,王晓之. 塔河老区井周弱势通道暂堵酸压技术. 断块油气田. 2019(06): 794-799 .
    18. 韩成,黄凯文,罗鸣,刘贤玉,邓文彪. 南海莺琼盆地高温高压井堵漏技术. 石油钻探技术. 2019(06): 15-20 . 本站查看

    Other cited types(6)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(24)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return