LI Xinyong, GENG Yudi, LIU Zhiyuan, WANG Wenzhi, ZHOU Zhou. An Experimental Study on Evaluation Methods for Fracturing Effect of Fractured-Vuggy Carbonate Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 88-93. DOI: 10.11911/syztjs.2020074
Citation: LI Xinyong, GENG Yudi, LIU Zhiyuan, WANG Wenzhi, ZHOU Zhou. An Experimental Study on Evaluation Methods for Fracturing Effect of Fractured-Vuggy Carbonate Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 88-93. DOI: 10.11911/syztjs.2020074

An Experimental Study on Evaluation Methods for Fracturing Effect of Fractured-Vuggy Carbonate Reservoir

More Information
  • Received Date: August 26, 2019
  • Revised Date: June 15, 2020
  • Available Online: August 18, 2020
  • The lack of evaluation system for evaluating communication of fractures in vuggy carbonate reservoirs makes it impossible to quantitatively analyze post frac treatment. Therefore, it is necessary to establish an evaluation method for post frac according to the characteristics of abundant natural fractures and karst caves in carbonate reservoirs. A physical experiment simulated hydraulic fracturing on artificial fractured-vuggy carbonate cores was conducted, the evaluation criteria that meets the fracturing characteristics of fractured-vuggy carbonate reservoirs were proposed based on the experimental results, and the concept of fractured-vuggy communication coefficient was proposed. Then, the proposed coefficient was used to quantitatively analyze the influence of in-situ differential stress on vuggy carbonate fracturing effect. The experimental results show that the SRV coefficient used to evaluate fracturing effect cannot accurately evaluate the effect of fractured-vuggy carbonate fracturing, while the fractured-vuggy communication coefficient can make a more accurate evaluation. The influence of horizontal in-situ differential stress on fractured-vuggy carbonate fracturing effect was evaluated with the proposed coefficient. It is found that the coefficient decreases first then increases with the increase of in-situ differential stress. The results demonstrate that the influence of various factors on fracturing effect of fractured-vuggy carbonate reservoirs are different from that of conventional ones, and the proposed fractured-vuggy communication coefficient can be used to more precisely analyze the fracture propagation and communication conditions, and to more effectively evaluate such reservoirs.
  • [1]
    汪虎,郭印同,王磊,等. 不同深度页岩储层力学各向异性的试验研究[J]. 岩土力学, 2017, 38(9): 2496–2506.

    WANG Hu, GUO Yintong, WANG Lei, et al. An experimental study on mechanical anisotropy of shale reservoirs at different depths[J]. Rock and Soil Mechanics, 2017, 38(9): 2496–2506.
    [2]
    侯冰,陈勉,李志猛,等. 页岩储集层水力裂缝网络扩展规模评价方法[J]. 石油勘探与开发, 2014, 41(6): 763–768. doi: 10.11698/PED.2014.06.18

    HOU Bing, CHEN Mian, LI Zhimeng, et al. Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs[J]. Petroleum Exploration and Development, 2014, 41(6): 763–768. doi: 10.11698/PED.2014.06.18
    [3]
    侯冰,程万,陈勉,等. 裂缝性页岩储层水力裂缝非平面扩展实验[J]. 天然气工业, 2014, 34(12): 81–86. doi: 10.3787/j.issn.1000-0976.2014.12.011

    HOU Bing, CHENG Wan, CHEN Mian, et al. Experiments on the non-planar extension of hydraulic fractures in fractured shale gas reservoirs[J]. Natural Gas Industry, 2014, 34(12): 81–86. doi: 10.3787/j.issn.1000-0976.2014.12.011
    [4]
    FISHER M K, WRIGHT C A, Davidson B M, et al. Integrating fracture mapping technologies to improve stimulations in the Barnett shale[J]. SPE Production & Facilities, 2005, 20(2): 85–93.
    [5]
    MAXWELL S C, URBANCIC T I, STEINSBERGER N, et al. Microseismic imaging of hydraulic fracture complexity in the Barnett shale[R]. SPE 77440, 2002.
    [6]
    MAYERHOFER M J, LOLON E, WARPINSKI N R, et al. What is stimulated reservoir volume?[J]. SPE Production & Operations, 2010, 25(1): 89–98.
    [7]
    MAYERHOFER M J, LOLON E P, YOUNGBLOOD J E, et al. Integration of microseismic-fracture-mapping results with numerical fracture network production modeling in the Barnett shale[R]. SPE 102103, 2006.
    [8]
    房好青,赵兵,汪文智,等. 塔河油田靶向压裂预制缝转向技术模拟研究[J]. 石油钻探技术, 2019, 47(5): 97–103.

    FANG Haoqing, ZHAO Bing, WANG Wenzhi, et al. Simulation study on the range of diversion in targeted fracturing of prefabricated fractures in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(5): 97–103.
    [9]
    李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂实验研究[J]. 石油钻探技术, 2020, 48(2): 88–92.

    LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88–92.
    [10]
    考佳玮,金衍,付卫能,等. 深层页岩在高水平应力差作用下压裂裂缝形态实验研究[J]. 岩石力学与工程学报, 2018, 37(6): 1332–1339.

    KAO Jiawei, JIN Yan, FU Weineng, et al. Experimental research on the morphology of hydraulic fractures in deep shale under high difference of in-situ horizontal stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(6): 1332–1339.
    [11]
    陈勉, 姜浒, 张广清, 等.水力压裂物理模拟实验中的相似准则的建立[C]//第四届全国低渗透油气藏压裂酸化技术研讨会, 北京, 2010.

    CHEN Mian, JIANG Hu, ZHANG Guangqing, et al. Establishment of similarity criterion in hydraulic fracturing physical simulation experiment[C]//The 4th National Seminar on Fracturing and Acidizing Technology for Low Permeability Oil and Gas Reservoirs, Beijing, 2010.
  • Related Articles

    [1]CHEN Dongfang, QUAN Bing, XIAO Xinqi, ZHANG Guangyu, CHEN Zhihua. Structure Design and Laboratory Testings of an Axial & Torsional Coupling Impactor[J]. Petroleum Drilling Techniques, 2024, 52(1): 78-83. DOI: 10.11911/syztjs.2023104
    [2]YU Yan, GAO Rui, JIA Yudan, QIAO Lei, ZHOU Wei. Laboratory Tests on the Rock Breaking Effects of Plasma Torch and Suggestions for Field Application[J]. Petroleum Drilling Techniques, 2022, 50(4): 59-63. DOI: 10.11911/syztjs.2022034
    [3]SONG Xianzhi, LI Jiacheng, SHI Yu, XU Fuqiang, ZENG Yijin. Laboratory-Scale Experimental Study on the Injection-Production Performance of a Multilateral-Well Enhanced Geothermal System[J]. Petroleum Drilling Techniques, 2021, 49(1): 81-87. DOI: 10.11911/syztjs.2021019
    [4]LI Chunyue, FANG Haoqing, MOU Jianye, HUANG Yanfei, HU Wenting. Experimental Study on Temporary Fracture Plugging and Diverting Fracturing of Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88-92. DOI: 10.11911/syztjs.2020018
    [5]FU Xuan, LI Gensheng, HUANG Zhongwei, CHI Huanpeng, LU Peiqing. Laboratory Testing and Productivity Numerical Simulation for Fracturing CBM Radial Horizontal Wells[J]. Petroleum Drilling Techniques, 2016, 44(2): 99-105. DOI: 10.11911/syztjs.201602017
    [6]Cha Xingchen, Liu Shuai, Jia Huimin, Chen Nan. Lab Experiment of Huff and Puff Effect of Combined Thermal Carrier in Ultra-Low Permeability Oilfields[J]. Petroleum Drilling Techniques, 2014, 42(5): 109-113. DOI: 10.11911/syztjs.201405020
    [7]Guo Xianmin. Millimeter Wave Drilling Technology[J]. Petroleum Drilling Techniques, 2014, 42(3): 55-60. DOI: 10.3969/j.issn.1001-0890.2014.03.011
    [8]Zhang Jinlong, Guo Xianmin, Cai Ximao, Yang Li. Plasma Channel Drilling Technology[J]. Petroleum Drilling Techniques, 2013, 41(4): 64-68. DOI: 10.3969/j.issn.1001-0890.2013.04.014
    [9]Shi Jin, Li Peng, Jia Jianghong. Laboratory Testing of Sand Control Effect for Mesh Type Screen[J]. Petroleum Drilling Techniques, 2013, 41(3): 104-108. DOI: 10.3969/j.issn.1001-0890.2013.03.020
    [10]Yan Fengming, Kang Yili, Sun Kai, Zhang Jinshun, Wang Hongwei, Du Chunchao. The Temporary Sealing Formula for Fractured-Vuggy Carbonate Reservoir[J]. Petroleum Drilling Techniques, 2012, 40(1): 47-51. DOI: 10.3969/j.issn.1001-0890.2012.01.010
  • Cited by

    Periodical cited type(14)

    1. 欧翔,谭凯,周楚翔. 深层钻井堵漏材料的研究现状与发展思考. 材料导报. 2024(S2): 615-620 .
    2. 江志勇,程云,马诚,罗根祥,杨超,吴限. 稠油开采水泥改性材料研究进展. 当代化工. 2024(12): 2990-2995 .
    3. 江志勇,程云,马诚,罗根祥,杨超,吴限. 稠油开采水泥改性材料研究进展. 当代化工. 2024(12): 2990-2995 .
    4. 胡晋军,史为纪,吴文兵,李庆永. 辽河海域高压气井月探1井套损补救固井技术. 石油钻采工艺. 2023(04): 441-446 .
    5. 刘静,马诚,杨超,钟飞升,罗根祥. 井漏地层钻井液堵漏材料研究现状与展望. 油田化学. 2023(04): 729-735 .
    6. 李中. 中国海油油气井工程数字化和智能化新进展与展望. 石油钻探技术. 2022(02): 1-8 . 本站查看
    7. 张晓诚,霍宏博,林家昱,刘海龙,李进. 渤海油田裂缝性油藏地质工程一体化井漏预警技术. 石油钻探技术. 2022(06): 72-77 . 本站查看
    8. 王兆永. 超高温高密度防漏堵漏水泥浆技术. 石油化工应用. 2022(12): 38-41+47 .
    9. 李洁,冯奇,张高峰,崔凯潇,蒋官澄,贺垠博. 介观尺度下裂缝内堵漏颗粒封堵层形成与破坏机理CFD-DEM模拟. 钻井液与完井液. 2022(06): 721-729 .
    10. 谢春来,胡清富,张凤臣,白忠卫,尹传铭,司小东. 伊拉克哈法亚油田Mishrif组碳酸盐岩储层防漏堵漏技术. 石油钻探技术. 2021(01): 41-46 . 本站查看
    11. 熊浪豪. 承压堵漏施工中井筒内堵漏浆量的计算. 中国石油和化工标准与质量. 2021(03): 111-113 .
    12. 孙金声,白英睿,程荣超,吕开河,刘凡,冯杰,雷少飞,张洁,郝惠军. 裂缝性恶性井漏地层堵漏技术研究进展与展望. 石油勘探与开发. 2021(03): 630-638 .
    13. 许婧,王在明,张艺馨,侯怡. 自固结堵漏技术在冀东油田G21X3井的应用. 钻井液与完井液. 2021(01): 89-92 .
    14. SUN Jinsheng,BAI Yingrui,CHENG Rongchao,LYU Kaihe,LIU Fan,FENG Jie,LEI Shaofei,ZHANG Jie,HAO Huijun. Research progress and prospect of plugging technologies for fractured formation with severe lost circulation. Petroleum Exploration and Development. 2021(03): 732-743 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (600) PDF downloads (61) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return