ZENG Bo, WANG Xinghao, HUANG Haoyong, ZHANG Nanqiao, YUE Wenhan, DENG Qi. Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073
Citation: ZENG Bo, WANG Xinghao, HUANG Haoyong, ZHANG Nanqiao, YUE Wenhan, DENG Qi. Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77-84. DOI: 10.11911/syztjs.2020073

Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan

More Information
  • Received Date: August 19, 2019
  • Revised Date: June 15, 2020
  • Available Online: July 02, 2020
  • There are persistent problems of immature fracturing technology, unreasonable key parameters, and low production of single well after fracturing in deep shale gas horizontal wells in Southern Sichuan. This paper introduces a process for optimizing the fracturing process and key parameters based on laboratory evaluation and numerical simulation by combining the geological engineering characteristics of deep shale reservoirs in Southern Sichuan through comprehensive analysis of fracturing effect of fractured wells. It focuses on improving the complexity of fracture networks, increasing the volume of fracturing stimulation, and maintaining the long-term conductivity of fractures. The key technology of volumetric fracturing for deep shale gas horizontal wells that focuses on“dense stage+short cluster spacing, equal-holesize large hole perforation, sand fracturing with low viscosity slick water at high pumping rate, high strength proppant with small particle size combinations, and large-scale fracturing with high-strength”is formed. After the application of this technology in Well Z3, its production achieved the rate of 21.3×104m3/d, which doubled and even more than that of wells with normal fracturing methods in the same block. In addition, high-yield production was achieved in several gas wells by applying this technology in deep shale gas horizontal wells in Southern Sichuan. This demonstrated that the technology has good adaptability and can be widely used. The successful application of this key technology in Southern Sichuan has laid a foundation for effective development of shale gas resources with depth around 3 500–4 500 m in Southern Sichuan.
  • [1]
    董大忠,施振生,管全中,等. 四川盆地五峰组—龙马溪组页岩气勘探进展、挑战与前景[J]. 天然气工业, 2018, 38(4): 67–76. doi: 10.3787/j.issn.1000-0976.2018.04.008

    DONG Dazhong, SHI Zhensheng, GUAN Quanzhong, et al. Progress, challenges and prospects of shale gas exploration in the Wufeng–Longmaxi reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(4): 67–76. doi: 10.3787/j.issn.1000-0976.2018.04.008
    [2]
    伍贤柱. 四川盆地威远页岩气藏高效开发关键技术[J]. 石油钻探技术, 2019, 47(4): 1–9. doi: 10.11911/syztjs.2019074

    WU Xianzhu. Key technologies in the efficient development of the Weiyuan shale gas reservoir, Sichuan Basin[J]. Petroleum Drilling Techniques, 2019, 47(4): 1–9. doi: 10.11911/syztjs.2019074
    [3]
    马新华,谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161–169.

    MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in Southern Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161–169.
    [4]
    冯国强,赵立强,卞晓冰,等. 深层页岩气水平井多尺度裂缝压裂技术[J]. 石油钻探技术, 2017, 45(6): 77–82.

    FENG Guoqiang, ZHAO Liqiang, BIAN Xiaobing, et al. Multi-scale hydraulic fracturing of horizontal wells in deep shale gas plays[J]. Petroleum Drilling Techniques, 2017, 45(6): 77–82.
    [5]
    吴奇,胥云,王腾飞,等. 增产改造理念的重大变革:体积改造技术概论[J]. 天然气工业, 2011, 31(4): 7–12. doi: 10.3787/j.issn.1000-0976.2011.04.002

    WU Qi, XU Yun, WANG Tengfei, et al. The revolution of reservoir stimulation: an introduction of volume fracturing[J]. Natural Gas Industry, 2011, 31(4): 7–12. doi: 10.3787/j.issn.1000-0976.2011.04.002
    [6]
    吴奇,胥云,王晓泉,等. 非常规油气藏体积改造技术:内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3): 352–358.

    WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs: connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3): 352–358.
    [7]
    曾顺鹏,张国强,韩家新,等. 多裂缝应力阴影效应模型及水平井分段压裂优化设计[J]. 天然气工业, 2015, 35(3): 55–59. doi: 10.3787/j.issn.1000-0976.2015.03.008

    ZENG Shunpeng, ZHANG Guoqiang, HAN Jiaxin, et al. Model of multi-fracture stress shadow effect and optimization design for staged fracturing of horizontal wells[J]. Natural Gas Industry, 2015, 35(3): 55–59. doi: 10.3787/j.issn.1000-0976.2015.03.008
    [8]
    NAGEL N, ZHANG F, SANCHEZ-NAGEL M, et al. Stress shadow evaluations for completion design in unconventional plays[R]. SPE 167128, 2013.
    [9]
    邓燕,尹建,郭建春. 水平井多段压裂应力场计算新模型[J]. 岩土力学, 2015, 36(3): 660–666.

    DENG Yan, YIN Jian, GUO Jianchun. A new calculation model for stress field due to horizontal well staged fracturing[J]. Rock and Soil Mechanics, 2015, 36(3): 660–666.
    [10]
    吴奇,胥云,张守良,等. 非常规油气藏体积改造技术核心理论与优化设计关键[J]. 石油学报, 2014, 35(4): 706–714. doi: 10.7623/syxb201404011

    WU Qi, XU Yun, ZHANG Shouliang, et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica, 2014, 35(4): 706–714. doi: 10.7623/syxb201404011
    [11]
    CADOTTE R J, WHITSETT A, SORRELL M, et al. Modern completion optimization in the Haynesville Shale[J]. SPE 187315, 2017.
    [12]
    付永强,马发明,曾立新,等. 页岩气藏储层压裂实验评价关键技术[J]. 天然气工业, 2011, 31(4): 51–54. doi: 10.3787/j.issn.1000-0976.2011.04.012

    FU Yongqiang, MA Faming, ZENG Lixin, et al. Key techniques of experimental evaluation in the fracturing treatment for shale gas reservoirs[J]. Natural Gas Industry, 2011, 31(4): 51–54. doi: 10.3787/j.issn.1000-0976.2011.04.012
    [13]
    杨建,付永强,陈鸿飞,等. 页岩储层的岩石力学特性[J]. 天然气工业, 2012, 32(7): 12–14. doi: 10.3787/j.issn.1000-0976.2012.07.003

    YANG Jian, FU Yongqiang, CHEN Hongfei, et al. Rock mechanical characteristics of shale reserviors[J]. Natural Gas Industry, 2012, 32(7): 12–14. doi: 10.3787/j.issn.1000-0976.2012.07.003
    [14]
    李勇明,陈曦宇,赵金洲,等. 射孔孔眼磨蚀对分段压裂裂缝扩展的影响[J]. 天然气工业, 2017, 37(7): 52–59. doi: 10.3787/j.issn.1000-0976.2017.07.008

    LI Yongming, CHEN Xiyu, ZHAO Jinzhou, et al. Influence of perforation erosion on multiple growing hydraulic fractures in multi-stage fracturing[J]. Natural Gas Industry, 2017, 37(7): 52–59. doi: 10.3787/j.issn.1000-0976.2017.07.008
    [15]
    谢军. 关键技术进步促进页岩气产业快速发展:以长宁—威远国家级页岩气示范区为例[J]. 天然气工业, 2017, 37(12): 1–10. doi: 10.3787/j.issn.1000-0976.2017.12.001

    XIE Jun. Rapid shale gas development accelerated by the progress in key technologies: a case study of the Changning–Weiyuan National Shale Gas Demonstration Zone[J]. Natural Gas Industry, 2017, 37(12): 1–10. doi: 10.3787/j.issn.1000-0976.2017.12.001
    [16]
    刘厚彬,孟英峰,李皋,等. 泥页岩水化作用对岩石强度的影响[J]. 钻采工艺, 2010, 33(6): 18–20.

    LIU Houbin, MENG Yingfeng, LI Gao, et al. Theoretical simulation and experimental evaluation of the effect of hydration on the shale rock strength[J]. Drilling & Production Technology, 2010, 33(6): 18–20.
    [17]
    陈铭,张士诚,柳明,等. 水力压裂支撑剂嵌入深度计算方法[J]. 石油勘探与开发, 2018, 45(1): 149–156.

    CHEN Ming, ZHANG Shicheng, LIU Ming, et al. Calculation method of proppant embedment depth in hydraulic fracturing[J]. Petroleum Exploration and Development, 2018, 45(1): 149–156.
  • Cited by

    Periodical cited type(48)

    1. 费世祥,崔越华,李小锋,汪淑洁,王晔,张正涛,孟培龙,郑小鹏,徐运动,高建文,罗文琴,蒋婷婷. 鄂尔多斯盆地中、东部深层煤岩气水平井高效开发主控因素. 石油与天然气地质. 2025(01): 273-287 .
    2. 姚志广,邵莎睿,黄永智,杜雨柔,董研,徐颖洁. 川南泸州区块深层页岩气井压裂参数优化. 天然气勘探与开发. 2025(02): 92-102 .
    3. 马收,邸士莹,魏玉华,程时清,刘明明,缪立南. 新型可变黏度共聚物压裂液的研制与应用. 特种油气藏. 2025(02): 137-144 .
    4. 赵金洲,于志豪,任岚,林然,吴建发,宋毅,沈骋,孙映. 真三轴应力下水化作用对深层页岩力学性质的影响——以四川盆地涪陵页岩气为例. 石油勘探与开发. 2025(03): 704-714 .
    5. 杨帆,李斌,王昆剑,文恒,杨睿月,黄中伟. 深部煤层气水平井大规模极限体积压裂技术——以鄂尔多斯盆地东缘临兴区块为例. 石油勘探与开发. 2024(02): 389-398 .
    6. 陈志杰,王开,张小强,姜玉龙,丁一,侯建,王文伟. 深部煤系储层缝间干扰多裂缝同步扩展规律试验研究. 矿业安全与环保. 2024(02): 74-81+89 .
    7. YANG Fan,LI Bin,WANG Kunjian,WEN Heng,YANG Ruiyue,HUANG Zhongwei. Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing Block, eastern Ordos Basin, NW China. Petroleum Exploration and Development. 2024(02): 440-452 .
    8. 段贵府,牟建业,闫骁伦,宋毅,徐颖洁,王南. 川南深层页岩气水平井压裂窜扰主控因素及诱导机制. 中国石油勘探. 2024(03): 146-158 .
    9. 陈美玲,郭红光,董治,孟振江,吴彦成. 单轴荷载下含层理页岩损伤破坏过程及破坏模式研究. 重庆大学学报. 2024(08): 152-166 .
    10. 王鹏,李斌,王昆剑,张红杰,张迎春,杜佳,张林强,王晓琪,苏海岩,陈光辉,杨睿月. 神府区块深部煤层气钻完井关键技术及应用. 煤田地质与勘探. 2024(08): 44-56 .
    11. Yanyan Wang,Hua Liu,Xiaohu Hu,Cheng Dai,Sidong Fang. Fracture network types revealed by well test curves for shale reservoirs in the Sichuan Basin, China. Energy Geoscience. 2024(01): 268-278 .
    12. 李德旗,刘春亭,朱炬辉,胥云,王荣,张俊成,吴凯,潘丹丹. 高闭合压力下深层页岩气促缝网强支撑压裂工艺. 石油钻采工艺. 2024(03): 336-345 .
    13. 谭鹏,陈朝伟,赵庆,刘纪含,张谧. 页岩气多簇压裂断层活化机理与控制方法. 石油钻探技术. 2024(06): 107-116 . 本站查看
    14. 蒋廷学,卞晓冰,孙川翔,张峰,林立世,魏娟明,仲冠宇. 深层页岩气地质工程一体化体积压裂关键技术及应用. 地球科学. 2023(01): 1-13 .
    15. 刘红磊,周林波,陈作,薄启炜,马玉生. 中国石化页岩气电动压裂技术现状及发展建议. 石油钻探技术. 2023(01): 62-68 . 本站查看
    16. 范宇恒,周丰,蒋廷学,张士诚,白森,张晓锋,杨泉,余维初. 页岩气环保变黏压裂液的研究与应用. 特种油气藏. 2023(02): 147-152 .
    17. 陆应辉,唐凯,李奔驰,任国辉,聂靖雯,聂华富. 20号速装坐封工具设计及应用. 测井技术. 2023(02): 241-246 .
    18. 赵圣贤,夏自强,郑马嘉,张德良,刘绍军,刘永旸,张鉴,刘东晨. 页岩气剩余储量评价及提高储量动用对策——以川南长宁页岩气田五峰组—龙马溪组为例. 天然气地球科学. 2023(08): 1401-1411 .
    19. 翁定为,江昀,易新斌,何春明,车明光,朱怡晖. 基于页岩气井返排特征的闷井时间优化方法. 石油钻探技术. 2023(05): 49-57 . 本站查看
    20. 唐堂,郭建春,翁定为,石阳,许可,李阳. 基于PIV/PTV的平板裂缝支撑剂输送试验研究. 石油钻探技术. 2023(05): 121-129 . 本站查看
    21. 王奇生,王天宇,钟朋峻,张潘潘,盛茂,田守嶒. 龙马溪组页岩表面孔隙结构与细观力学特性研究. 石油科学通报. 2023(05): 626-636 .
    22. 王平,沈海超. 加拿大M致密砂岩气藏高效开发技术. 石油钻探技术. 2022(01): 97-102 . 本站查看
    23. 张磊,刘安邦,钟亚军,张永飞,王建平. 大规模滑溜水压裂参数优化研究与应用. 非常规油气. 2022(02): 112-118 .
    24. 李曙光,王红娜,徐博瑞,甄怀宾,王成旺,袁朴. 大宁-吉县区块深层煤层气井酸化压裂产气效果影响因素分析. 煤田地质与勘探. 2022(03): 165-172 .
    25. 沈骋,范宇,曾波,郭兴午. 渝西区块页岩气储层改造优化对策与适应性分析. 油气地质与采收率. 2022(02): 131-139 .
    26. 吴建发,赵圣贤,张瑛堃,夏自强,李博,苑术生,张鉴,张成林,何沅翰,陈尚斌. 深层页岩气储层物质组成与孔隙贡献及其勘探开发意义. 天然气地球科学. 2022(04): 642-653 .
    27. 刘雨舟,张志坚,王磊,何国鸿. 国内变黏滑溜水研究进展及在川渝非常规气藏的应用. 石油与天然气化工. 2022(03): 76-81+90 .
    28. 蒋廷学,周珺,廖璐璐. 国内外智能压裂技术现状及发展趋势. 石油钻探技术. 2022(03): 1-9 . 本站查看
    29. 魏娟明. 滑溜水–胶液一体化压裂液研究与应用. 石油钻探技术. 2022(03): 112-118 . 本站查看
    30. 刘尧文,明月,张旭东,卞晓冰,张驰,王海涛. 涪陵页岩气井“套中固套”机械封隔重复压裂技术. 石油钻探技术. 2022(03): 86-91 . 本站查看
    31. 陈志强,王海波,李凤霞,李远照,张驰,周彤. 基于施工参数的临界出砂速率预测模型. 油气井测试. 2022(03): 1-8 .
    32. 冯江荣,赵圣贤,夏自强,李志宏,刘永旸,何沅翰,高攀,王高翔. 物质点法在页岩储层压裂模拟研究中的应用. 断块油气田. 2022(05): 698-703 .
    33. 李嫣然,胡志明,刘先贵,蔡长宏,穆英,张清秀,曾术悌,郭静姝. 泸州地区龙马溪组深层页岩孔隙结构特征. 断块油气田. 2022(05): 584-590 .
    34. 何颂根,冉旭,于丹,王峻峰,邹枫. 页岩多重孔隙水相自吸能力评价. 断块油气田. 2022(05): 598-603 .
    35. 宋军备,张驰,李凤霞,陈志强,韦琦. 页岩气藏压裂防砂工艺优化与现场试验. 断块油气田. 2022(06): 769-774 .
    36. 张驰,周彤,肖佳林,韦琦,马文涛. 涪陵页岩气田加密井压裂技术的实践与认识. 断块油气田. 2022(06): 775-779 .
    37. 易良平,杨长鑫,杨兆中,宋毅,何小平,周小金,李小刚,胡俊杰. 天然裂缝带对深层页岩压裂裂缝扩展的影响规律. 天然气工业. 2022(10): 84-97 .
    38. 沈骋,谢军,赵金洲,范宇,任岚. 提升川南地区深层页岩气储层压裂缝网改造效果的全生命周期对策. 天然气工业. 2021(01): 169-177 .
    39. 郭建春,赵志红,路千里,尹丛彬,陈朝刚. 深层页岩缝网压裂关键力学理论研究进展. 天然气工业. 2021(01): 102-117 .
    40. 刘宗堂. 初探旋转导向系统在深层页岩油水平井的应用. 中国设备工程. 2021(09): 130-131 .
    41. 张炜. 深部页岩压裂缝网体积模拟及应用. 石油钻采工艺. 2021(01): 97-103 .
    42. 梁天成,才博,蒙传幼,朱兴旺,刘云志,陈峰. 水力压裂支撑剂性能对导流能力的影响. 断块油气田. 2021(03): 403-407 .
    43. 郝丽华,甘仁忠,潘丽燕,阮东,刘成刚. 玛湖凹陷风城组页岩油巨厚储层直井体积压裂关键技术. 石油钻探技术. 2021(04): 99-105 . 本站查看
    44. 李凯凯,安然,岳潘东,陈世栋,杨凯澜,韦文. 安83区页岩油水平井大规模蓄能体积压裂技术. 石油钻探技术. 2021(04): 125-129 . 本站查看
    45. 王磊,盛志民,赵忠祥,宋道海,王丽峰,王刚. 吉木萨尔页岩油水平井大段多簇压裂技术. 石油钻探技术. 2021(04): 106-111 . 本站查看
    46. 向洪,隋阳,王静,王波,杨雄. 胜北深层致密砂岩气藏水平井细分切割体积压裂技术. 石油钻采工艺. 2021(03): 368-373 .
    47. 黄乘升. 油基钻井液在威远地区页岩气水平井中的应用. 化学工程与装备. 2021(09): 47-48+44 .
    48. 滕卫卫,李想. 底水火山岩油藏水平井优化设计. 特种油气藏. 2021(05): 120-125 .

    Other cited types(23)

Catalog

    Article Metrics

    Article views (1369) PDF downloads (209) Cited by(71)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return