Hicham Ferroudji, Ahmed Hadjadj, Titus N Ofei, Ahmed Haddad. Effects of the Inner Pipe Rotation and Rheological Parameters on the Axial and Tangential Velocity Profiles and Pressure Drop of Yield Power-Law Fluid in Eccentric Annulus[J]. Petroleum Drilling Techniques, 2020, 48(4): 37-42. DOI: 10.11911/syztjs.2020066
Citation: Hicham Ferroudji, Ahmed Hadjadj, Titus N Ofei, Ahmed Haddad. Effects of the Inner Pipe Rotation and Rheological Parameters on the Axial and Tangential Velocity Profiles and Pressure Drop of Yield Power-Law Fluid in Eccentric Annulus[J]. Petroleum Drilling Techniques, 2020, 48(4): 37-42. DOI: 10.11911/syztjs.2020066

Effects of the Inner Pipe Rotation and Rheological Parameters on the Axial and Tangential Velocity Profiles and Pressure Drop of Yield Power-Law Fluid in Eccentric Annulus

More Information
  • Author Bio:

    Hicham Ferroudji(1991—), Male, Arris (Algeria), he holds a BSc (2013) and MSc degrees (2015) in Mechanical Engineering of petrochemical plants from Hydrocarbons and Chemistry Faculty, Boumerdes University, Algeria. He is currently a Ph. D candidate at Hydrocarbons and Chemistry Faculty, Boumerdes University, Algeria. His research study includes CFD modelling of multiphase flow in annular section in which the drill string makes orbital and whirling motion, including cuttings transport, and drilling engineering. E-mail: hichamf32@gmail.com

  • Received Date: May 19, 2019
  • Revised Date: May 06, 2020
  • Available Online: May 20, 2020
  • Drilling fluid mostly behaves as non-Newtonian fluid and it can be modelled by the Herschel-Bulkley model, which is also called yield power-law (YPL). This model provides accurate results for a wide range of shear rate. In the present paper, a numerical study of the Herschel-Bulkley fluid through the eccentric annulus (E=0.5) was performed for the laminar flow regime using finite volume method (FVM). Effect of the inner pipe rotation and rheology parameters (yield stress τ0, consistency index K and behavior index n) on the axial and tangential velocity profiles and pressure drop gradient were studied. Results showed that increasing the inner pipe rotation from 100 to 400 rpm induces an increase of 120 % of the maximum axial velocity. Low value of the behavior index (n=0.2) causes the appearance of the secondary flow in the wide region of the annulus. The variation of the inner pipe rotation and rheological parameters of the Herschel-Bulkley fluid have a negligible effect on the tangential velocity profile in the wide region of the eccentric annulus. Furthermore, It was observed that the increase of the inner pipe rotation from 0 rpm to 400 rpm causes a decrease of 10% of pressure drop gradient of yield power-law fluid for all eccentric annulus (E=0.2, E=0.4, E=0.6 and E=0.8).

  • [1]
    WHITTAKER A. Theory and application of drilling fluid hydraulics[M]. Boston: International Human Resources Development Corporation, 1985.
    [2]
    COUSSOT P, PIAU J M. On the behavior of fine mud suspensions[J]. Rheologica Acta, 1994, 33(3): 175–184. doi: 10.1007/BF00437302
    [3]
    NOUAR C, DESAUBRY C, ZENAIDI H. Numerical and experimental investigation of thermal convection for a thermodependent Herschel-Bulkley fluid in an annular duct with rotating inner cylinder[J]. European Journal of Mechanics-B/Fluids, 1998, 17(6): 875–900. doi: 10.1016/S0997-7546(99)80018-1
    [4]
    HUSSAIN Q E, SHARIF M A R. Numerical modeling of helical flow of viscoplastic fluids in eccentric annuli[J]. AIChE Journal, 2000, 46(10): 1937–1946. doi: 10.1002/aic.690461006
    [5]
    VIEIRA NETO J L, MARTINS A L, ATAÍDE C H, et al. The effect of the inner cylinder rotation on the fluid dynamics of non-Newtonian fluids in concentric and eccentric annuli[J]. Brazilian Journal of Chemical Engineering, 2014, 31(4): 829–838. doi: 10.1590/0104-6632.20140314s00002871
    [6]
    OFEI T N, IRAWAN S, PAO W. Flow profile distribution in narrow annuli using modified yield power-law fluid model[C]//AWANG M, NEGASH B M, MD AKHIR N A, et al. ICIPEG 2014. Singapore: Springer, 2015: 209–217.
    [7]
    AHMED R M, MISKA S Z. Experimental study and modeling of yield power-law fluid flow in annuli with drillpipe rotation[R]. SPE 112604, 2008.
    [8]
    HANSEN S A, STERRI N. Drill pipe rotation effects on frictional pressure losses in slim annuli[R]. SPE 30488, 1995.
    [9]
    OZBAYOGLU E M, SORGUN M. Frictional pressure loss estimation of non-Newtonian fluids in realistic annulus with pipe rotation[R]. SPE 141518, 2010.
    [10]
    BIRD R B, STEWART W E, LIGHTFOOT E N. Transport phenomena[M]. Manhattan: John Wiley & Sons Inc., 2002.
    [11]
    MADLENER K, FREY B, CIEZKI H K. Generalized reynolds number for non-Newtonian fluids[J]. Progress in Propulsion Physics, 2009, 1: 237–250.
    [12]
    CENGEL Y A. Fluid mechanics[M]. India: Tata McGraw-Hill Education, 2010.
  • Cited by

    Periodical cited type(7)

    1. 邬青鑫,李乐泓,任梓寒,胡清萍,张懿帆,辛文宾,徐顺义. 蒸汽辅助重力泄油转燃烧关键参数研究. 石油化工应用. 2024(11): 55-60 .
    2. 王铎宇,王欣. 亲油疏水型沙柳纤维状活性炭的制备及性能研究. 化工新型材料. 2023(05): 293-298 .
    3. 边紫薇. 我国稠油油田微生物采油进展综述. 石油地质与工程. 2021(03): 73-79 .
    4. 张传文,孟庆强,唐玄. 油页岩开采技术现状与展望. 矿产勘查. 2021(08): 1798-1805 .
    5. 巩永丰. 油砂SAGD水平井钻井液体系. 钻井液与完井液. 2018(05): 72-77 .
    6. 孙逢瑞,姚约东,李相方,陈刚,丁冠阳. 基于R-K-S方程的同心双管注多元热流体传热特征研究. 石油钻探技术. 2017(02): 107-114 . 本站查看
    7. 林晶,王新,于洋飞,张宝龙,胡新兴. 新疆油田SAGD鱼骨状水平井钻井技术. 石油钻探技术. 2016(04): 7-11 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (974) PDF downloads (84) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return