XIA Hongquan, LIANG Jingrui, WEN Xiaofeng. The Standard Division of Tight Oil Reservoirs in Chang 6-8 Members of Changqing Oilfield based on CQ Index[J]. Petroleum Drilling Techniques, 2020, 48(3): 114-119. DOI: 10.11911/syztjs.2020064
Citation: XIA Hongquan, LIANG Jingrui, WEN Xiaofeng. The Standard Division of Tight Oil Reservoirs in Chang 6-8 Members of Changqing Oilfield based on CQ Index[J]. Petroleum Drilling Techniques, 2020, 48(3): 114-119. DOI: 10.11911/syztjs.2020064

The Standard Division of Tight Oil Reservoirs in Chang 6-8 Members of Changqing Oilfield based on CQ Index

More Information
  • Received Date: October 24, 2019
  • Revised Date: April 27, 2020
  • Available Online: May 07, 2020
  • The tight oil reservoirs in the Chang 6-8 Member of the Triassic Yanchang Formation in the Ordos Basin are characterized by low porosity, low permeability, low pressure and low production. In order to optimize the geological engineering sweet spots on the single-well section, a practical method for standard division of tight oil reservoirs has been proposed in accordance with the geological characteristics of Chang 6-8 tight oil reservoir. The first step involved calculating and extracting the minimum horizontal principal stress, fracture pressure, brittleness index, porosity, permeability and water saturation of reservoir etc. This allows them to establish the comprehensive evaluation index of the reservoir completion quality (CQ), and then, to classify the reservoirs “good, medium and bad” based on the relationship chart of CQ and single well productivity. And then to optimize the perforating and fracturing intervals in terms of the CQ value. Using this method, reservoir division was performed in Well L375 of the Changqing Longdong Area, and the comparison of division result and the oil test result showed that the perforating/fracturing interval optimized by the CQ index was completely consistent with the actual intervals of high, medium and low production-yields. Study results also indicated that this method could meet the requirements for optimizing the perforating/fracturing intervals of tight oil and and for identifying engineering geological sweet spots, and can be used for a classification standard for block reservoirs.

  • [1]
    黄鑫,董秀成,肖春跃,等. 非常规油气勘探开发现状及发展前景[J]. 天然气与石油, 2012, 30(6): 38–41.

    HUANG Xin, DONG Xiucheng, XIAO Chunyue, et al. Present situation and development prospect of unconventional oil and gas exploration and development[J]. Natural Gas and Oil, 2012, 30(6): 38–41.
    [2]
    杨双定. 鄂尔多斯盆地致密砂岩气层测井评价新技术[J]. 天然气工业, 2005, 25(9): 45–47. doi: 10.3321/j.issn:1000-0976.2005.09.015

    YANG Shuangding. New methods of log evaluation of the tight sandstone gas reservoirs in E’erduosi Basin[J]. Natural Gas Industry, 2005, 25(9): 45–47. doi: 10.3321/j.issn:1000-0976.2005.09.015
    [3]
    楼一珊, 金业权.岩石力学与石油工程[M].北京: 石油工业出版社, 2006.

    LOU Yishan, JIN Yequan. Rock mechanics and petroleum engineering[M]. Beijing: Petroleum Industry Press, 2006.
    [4]
    王团. 致密砂岩储层中优质储层的划分及识别方法研究[J]. 国外测井技术, 2015(3): 26–29.

    WANG Tuan. Research on the division and identification of high-quality reservoir in tight sandstone reservoir[J]. World Well Logging Technology, 2015(3): 26–29.
    [5]
    杜金虎,刘合,马德胜,等. 试论中国陆相致密油有效开发技术[J]. 石油勘探与开发, 2014, 41(2): 198–204. doi: 10.11698/PED.2014.02.09

    DU Jinhu, LIU He, MA Desheng, et al. Discussion on effective development techniques for continental tight oil in China[J]. Petroleum Exploration and Development, 2014, 41(2): 198–204. doi: 10.11698/PED.2014.02.09
    [6]
    赖锦,王贵文,范卓颖,等. 非常规油气储层脆性指数测井评价方法研究进展[J]. 石油科学通报, 2016, 1(3): 330–341.

    LAI Jin, WANG Guiwen, FAN Zhuoying, et al. Research progress in brittleness index evaluation methods with logging data in unconventional oil and gas reservoirs[J]. Petroleum Science Bulletin, 2016, 1(3): 330–341.
    [7]
    夏宏泉,杨双定,弓浩浩,等. 岩石脆性实验及压裂缝高度与宽度测井预测[J]. 西南石油大学学报(自然科学版), 2013, 35(4): 81–89. doi: 10.3863/j.issn.1674-5086.2013.04.011

    XIA Hongquan, YANG Shuangding, GONG Haohao, et al. Research on rock brittleness experiment and logging prediction of hydraulic fracture height & width[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(4): 81–89. doi: 10.3863/j.issn.1674-5086.2013.04.011
    [8]
    林英松,葛洪魁,王顺昌. 岩石动静力学参数的试验研究[J]. 岩石力学与工程学报, 1998, 17(2): 216–222. doi: 10.3321/j.issn:1000-6915.1998.02.019

    LIN Yingsong, GE Hongkui, WANG Shunchang. Testing study on dynamic and static elastic parameters of rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(2): 216–222. doi: 10.3321/j.issn:1000-6915.1998.02.019
    [9]
    周新桂,张林炎,范昆,等. 鄂尔多斯盆地现今地应力测量及其在油气开发中的应用[J]. 西安石油大学学报(自然科学版), 2009, 24(3): 7–12.

    ZHOU Xingui, ZHANG Linyan, FAN Kun, et al. Measurement of the present earth stress of Ordos Basin and its applications in oil and gas exploitation[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2009, 24(3): 7–12.
    [10]
    夏宏泉,刘畅,李高仁,等. 基于测井资料的TIV地层水平地应力计算方法[J]. 石油钻探技术, 2019, 47(6): 67–72. doi: 10.11911/syztjs.2019130

    XIA Hongquan, LIU Chang, LI Gaoren, et al. A logging data-based calculation method for the horizontal TIV formation in-situ stress[J]. Petroleum Drilling Techniquest, 2019, 47(6): 67–72. doi: 10.11911/syztjs.2019130
    [11]
    李传亮,孔祥言. 油井压裂过程中岩石破裂压力计算公式的理论研究[J]. 石油钻采工艺, 2000, 22(2): 54–56. doi: 10.3969/j.issn.1000-7393.2000.02.014

    LI Chuanliang, KONG Xiangyan. A theoretical study on rock breakdown pressure calculation equations of fracturing process[J]. Oil Drilling & Production Technology, 2000, 22(2): 54–56. doi: 10.3969/j.issn.1000-7393.2000.02.014
    [12]
    HIGGINS S, GOODWIN S, DONALD A, et al. Anisotropic stress models improve completion design in the Baxter Shale[R]. SPE 115736, 2008.
    [13]
    李映艳,钱根葆,高阳,等. 准噶尔盆地玛湖凹陷百口泉组砾岩致密油藏地质“甜点”分级标准及应用[J]. 东北石油大学学报, 2018, 42(6): 85–94. doi: 10.3969/j.issn.2095-4107.2018.06.009

    LI Yingyan, QIAN Genbao, GAO Yang, et al. Identification criterion of the geological "sweet point" of conglomerate tight reservoir and its application of Baikouquan Formation in Mahu Sag, Junggar Basin[J]. Journal of Northeast Petroleum University, 2018, 42(6): 85–94. doi: 10.3969/j.issn.2095-4107.2018.06.009
    [14]
    夏宏泉,文晓峰,冯春珍,等. 基于测井信息的致密油层射孔优化选层方法研究[J]. 测井技术, 2017, 41(3): 353–357.

    XIA Hongquan, WEN Xiaofeng, FENG Chunzhen, et al. Optimal selecting interval method of tight oil reservoir perforating based on well logging information[J]. Well Logging Technology, 2017, 41(3): 353–357.
    [15]
    吴飞鹏,蒲春生,陈德春,等. 射孔油井产能计算模型研究[J]. 石油钻探技术, 2008, 36(1): 69–72. doi: 10.3969/j.issn.1001-0890.2008.01.019

    WU Feipeng, PU Chunsheng, CHEN Dechun, et al. Productivity calculation model of perforated oil wells[J]. Petroleum Drilling Techniques, 2008, 36(1): 69–72. doi: 10.3969/j.issn.1001-0890.2008.01.019
  • Cited by

    Periodical cited type(28)

    1. 李阳,王延光,刘浩杰,陈雨茂,薛兆杰. 中国石化油藏地球物理二十年发展与思考. 石油物探. 2024(01): 1-11 .
    2. 彭岩,王一博,雷征东,王笑涵,汪大伟,张广清,周大伟. 致密油藏驱渗结合采油可行性研究. 科学技术与工程. 2024(04): 1448-1458 .
    3. 陈鑫. 致密油整体缝网压裂技术在杏树岗油田杏69-1井区扶余油层的应用实践. 中外能源. 2024(04): 69-75 .
    4. 白斌,戴朝成,侯秀林,杨亮,王瑞,王岚,孟思炜,董若婧,刘羽汐. 松辽盆地白垩系青山口组页岩层系非均质地质特征与页岩油甜点评价. 石油与天然气地质. 2023(04): 846-856 .
    5. 张锦宏,周爱照,成海,毕研涛. 中国石化石油工程技术新进展与展望. 石油钻探技术. 2023(04): 149-158 . 本站查看
    6. 邹敏,夏东领,夏冬冬,庞雯. 致密砂岩储层非均质成因研究. 西南石油大学学报(自然科学版). 2022(01): 41-52 .
    7. 邸士莹,程时清,白文鹏,尚儒源,潘有军,史文洋. 裂缝性致密油藏注水吞吐转不稳定水驱开发模拟. 石油钻探技术. 2022(01): 89-96 . 本站查看
    8. 范家伟,袁野,李绍华,王彦秋,黄兰,尚钲凯,李君,陶正武. 塔里木盆地深层致密油藏地质工程一体化模拟技术. 断块油气田. 2022(02): 194-198 .
    9. 马克新. 复合压裂技术在大庆油田Ⅱ、Ⅲ类致密储层的应用. 大庆石油地质与开发. 2022(04): 161-167 .
    10. 黄越,金智荣. 花庄区块页岩油密切割体积压裂对策研究. 石油地质与工程. 2022(05): 96-100 .
    11. 吴飞鹏,范贤章,徐尔斯,杨涛,颜丙富,刘静. 压裂液高压渗滤对砂岩基质损伤演化的细观力学分析. 岩土力学. 2021(12): 3238-3248 .
    12. 覃建华,张景,蒋庆平,冯月丽,赵逸清,朱键,卢志远,伍顺伟. 玛湖砾岩致密油“甜点”分类评价及其工程应用. 中国石油勘探. 2020(02): 110-119 .
    13. 闫林,陈福利,王志平,阎逸群,曹瑾健,王坤琪. 我国页岩油有效开发面临的挑战及关键技术研究. 石油钻探技术. 2020(03): 63-69 . 本站查看
    14. 许锋,姚约东,吴承美,许章,张金风,赵国翔. 温度对吉木萨尔致密油藏渗吸效率的影响研究. 石油钻探技术. 2020(05): 100-104 . 本站查看
    15. 邸元,吴大卫,WU Yushu. 油藏渗流–应力耦合分析的FEM-FVM混合方法的改进. 岩石力学与工程学报. 2020(S1): 2645-2654 .
    16. 赵驰,吴欣梦. 探究侏罗系油藏开发中采用精细单砂体刻画技术的价值分析. 信息记录材料. 2019(01): 40-41 .
    17. 高锐. 大庆油田致密油藏开发钻井提速技术浅析. 石油工业技术监督. 2019(01): 54-57 .
    18. 邹敏,夏东领,庞雯,徐婷. 致密砂岩储层微观孔喉结构表征方法及其应用——以鄂尔多斯盆地红河地区长8层为例. 西安石油大学学报(自然科学版). 2019(02): 46-53 .
    19. 崔树建. 大庆油田齐家区块致密油水平井提速技术研究. 西部探矿工程. 2019(09): 56-57+61 .
    20. 夏东领,邹敏,庞雯,吴胜和. 鄂尔多斯盆地镇泾地区长8致密砂岩储层孔喉组合分类及其意义. 地质科技情报. 2018(04): 120-126 .
    21. 杜洪凌,许江文,李峋,陆军,章敬,彭永灿,陈进,王磊. 新疆油田致密砂砾岩油藏效益开发的发展与深化——地质工程一体化在玛湖地区的实践与思考. 中国石油勘探. 2018(02): 15-26 .
    22. 姜瑞忠,张春光,崔永正,张伟,张福蕾,沈泽阳. 考虑压敏的双重介质分形油藏非线性渗流模型. 断块油气田. 2018(05): 612-616 .
    23. 常雷. 长垣、齐家地区致密油水平井钻井提速配套技术. 石油地质与工程. 2017(06): 98-100+104+128-129 .
    24. 杨树坤,张博,赵广渊,李翔,郭宏峰. 致密油藏热水驱增油机理定性分析及定量评价. 石油钻采工艺. 2017(04): 399-404 .
    25. 何祖清,梁承春,彭汉修,朱明,何同. 鄂尔多斯盆地南部致密油藏水平井智能分采技术研究与试验. 石油钻探技术. 2017(03): 88-94 . 本站查看
    26. 吕栋梁,徐伟,唐海,唐瑞雪. 特低渗透油藏水平井井网极限注采井距的确定. 断块油气田. 2016(05): 634-637 .
    27. 刘伟,张晋言,张文姣,刘海河,吕增伟. 基于电成像测井资料的砂砾岩储层有效性分类评价方法. 石油钻探技术. 2016(04): 114-119 . 本站查看
    28. 李阳,薛兆杰. 中国石化油气田开发工程技术面临的挑战与发展方向. 石油钻探技术. 2016(01): 1-5 . 本站查看

    Other cited types(20)

Catalog

    Article Metrics

    Article views (1310) PDF downloads (58) Cited by(48)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return