Citation: | REN Wen, LIU Xiaohui, LI Shenglin, WANG Fei, TONG Kun, ZHANG Mingdong. Electro-Sorption Treatment Method for Waste High Performance Water-Based Drilling Fluid[J]. Petroleum Drilling Techniques, 2020, 48(4): 50-55. DOI: 10.11911/syztjs.2020046 |
With the higher and higher environmental protection requirements for shale gas exploration and development, high-performance water-based drilling fluids have been gradually popularized in the drilling process. However,waste drilling fluid is still produced in a large amount. In order to improve the recycling efficiency of water-based drilling fluid, features of waste high-performance water-based drilling fluid, such as high content of total solid phase and micro poor solid phase, were analyzed, during which it was proposed to remove the poor solid phase in waste high-performance drilling fluid by the electro-sorption method, which had the advantages of having no addition of chemical agents, a selective removal of micro pore solid phase and no damage to the original effective components of drilling fluid. The experimental results showed that after taking the electro-sorption treatment process for two times, the ultra-fine and inferior solid phases of less than 10 μm in the waste high-performance water-based drilling fluid could be removed. Further, with the combination of electro-sorption method and centrifugal separation pretreatment, the performance of regenerated drilling fluid could be significantly improved, thus realizing the recycling of drilling fluid. The results obtained showed that the electro-absorption treatment of waste high-performance water-based drilling fluid constituted a new resource-based model for drilling fluid consumption reduction and reuse, which showed good potential for popularization and application.
[1] |
刘尧文. 涪陵页岩气田绿色开发关键技术[J]. 石油钻探技术, 2018, 46(5): 8–13.
LIU Yaowen. Key technologies of green development in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(5): 8–13.
|
[2] |
刘永贵. 大庆致密油藏水平井高性能水基钻井液优化与应用[J]. 石油钻探技术, 2018, 46(5): 35–39.
LIU Yonggui. Optimization and application of high performance water-based drilling fluid for horizontal wells in Daqing tight oil reservoir[J]. Petroleum Drilling Techniques, 2018, 46(5): 35–39.
|
[3] |
徐加放,邱正松,吕开河. 泥页岩水化–力学耦合模拟实验装置与压力传递实验新技术[J]. 石油学报, 2005, 26(6): 115–118. doi: 10.3321/j.issn:0253-2697.2005.06.027
XU Jiafang, QIU Zhengsong, LYU Kaihe. Pressure transmission testing technology and simulation equipment for hydra-mechanics coupling of shale[J]. Acta Petrolei Sinica, 2005, 26(6): 115–118. doi: 10.3321/j.issn:0253-2697.2005.06.027
|
[4] |
邸伟娜,闫娜,叶海超. 国外页岩气钻井液技术新进展[J]. 钻井液与完井液, 2014, 31(6): 76–81. doi: 10.3969/j.issn.1001-5620.2014.06.021
DI Weina, YAN Na, YE Haichao. Overseas new progresses in nano drilling fluid technology for shale drilling[J]. Drilling Fluid & Completion Fluid, 2014, 31(6): 76–81. doi: 10.3969/j.issn.1001-5620.2014.06.021
|
[5] |
何振奎. 页岩水平井斜井段强抑制强封堵水基钻井液技术[J]. 钻井液与完井液, 2013, 30(2): 43–46. doi: 10.3969/j.issn.1001-5620.2013.02.013
HE Zhenkui. Strong inhibition and sealing water based drilling fluid technology for deviated section of shale horizontal[J]. Drilling Fluid & Completion Fluid, 2013, 30(2): 43–46. doi: 10.3969/j.issn.1001-5620.2013.02.013
|
[6] |
常德武,蔡记华,岳也,等. 一种适合页岩气水平井的水基钻井液[J]. 钻井液与完井液, 2015, 32(2): 47–51. doi: 10.3969/j.issn.1001-5620.2015.02.012
CHANG Dewu, CAI Jihua, YUE Ye, et al. A water base mud for shale gas horizontal well[J]. Drilling Fluid & Completion Fluid, 2015, 32(2): 47–51. doi: 10.3969/j.issn.1001-5620.2015.02.012
|
[7] |
陈庚绪,刘奥,王茜,等. 用于页岩气井的强抑制防塌高性能水基钻井液体系[J]. 断块油气田, 2018, 25(4): 529–532.
CHEN Gengxu, LIU Ao, WANG Qian, et al. High inhibition and anti-sloughing water-based drilling fluid system for shale gas horizontal wells[J]. Fault-Block Oil & Gas Field, 2018, 25(4): 529–532.
|
[8] |
吕开河,王树永,刘天科,等. 由一种多功能处理剂和盐配成的新型水基钻井液[J]. 钻井液与完井液, 2009, 26(2): 26–27. doi: 10.3969/j.issn.1001-5620.2009.02.007
LYU Kaihe, WANG Shuyong, LIU Tianke, et al. A study on a new water based drilling fluid[J]. Drilling Fluid & Completion Fluid, 2009, 26(2): 26–27. doi: 10.3969/j.issn.1001-5620.2009.02.007
|
[9] |
KUANG Peijing, CHEN Nan, FENG Chuanping, et al. Construction and optimization of an iron particle-zeolite packing electrochemical-adsorption system for the simultaneous removal of nitrate and by-products[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 86: 101–112. doi: 10.1016/j.jtice.2018.02.023
|
[10] |
LI Miao, FENG Chuanping, ZHANG Zhenya, et al. Treatment of nitrate contaminated water using an electrochemical method[J]. Bioresource Technology, 2010, 101(16): 6553–6557. doi: 10.1016/j.biortech.2010.03.076
|
[11] |
KALARUBAN M, LOGANATHAN P, KANDASAMY J, et al. Enhanced removal of nitrate in an integrated electrochemical-adsorption system[J]. Separation and Purification Technology, 2017, 189: 260–266. doi: 10.1016/j.seppur.2017.08.010
|
[12] |
RANA P, MOHAN N, RAJAGOPAL C. Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes[J]. Water Research, 2004, 38(12): 2811–2820. doi: 10.1016/j.watres.2004.02.029
|
[13] |
许毓,刘光全,邓皓,等. 高性能水基钻井液废物不落地处理先导试验[J]. 油气田环境保护, 2017, 27(3): 19–20. doi: 10.3969/j.issn.1005-3158.2017.03.006
XU Yu, LIU Guangquan, DENG Hao, et al. Pilot test of high performance water-based drilling fluid waste treatment[J]. Environmental Protection of Oil & Gas Fields, 2017, 27(3): 19–20. doi: 10.3969/j.issn.1005-3158.2017.03.006
|
[14] |
谢水祥,任雯,乔川,等. 可实现废弃水基钻井液再生利用的电化学吸附法[J]. 天然气工业, 2018, 38(3): 76–80. doi: 10.3787/j.issn.1000-0976.2018.03.009
XIE Shuixiang, REN Wen, QIAO Chuan, et al. An electrochemical adsorption method for the reuse of waste water-based drilling fluids[J]. Natural Gas Industry, 2018, 38(3): 76–80. doi: 10.3787/j.issn.1000-0976.2018.03.009
|
[15] |
OOI T Y, YONG E L, DIN M F M, et al. Optimization of aluminium recovery from water treatment sludge using response surface methodology[J]. Journal of Environmental Management, 2018, 228: 13–19.
|
[16] |
ZHANG Hui, LI Yanli, WU Xiaogang. Statistical experiment design approach for the treatment of landfill leachate by Photoelectro-Fenton process[J]. Journal of Environmental Engineering, 2011, 138(3): 278–285.
|
[17] |
JUNG K W, AHN K H. Dual purpose recovered coagulant from drinking water treatment residuals for adjustment of initial pH and coagulation aid in electrocoagulation process[J]. Environmental Technology, 2016, 37(13): 1605–1617. doi: 10.1080/09593330.2015.1122096
|
1. |
邱春阳,王重重,姜春丽,王俊,秦涛,杨倩云. 陕西榆林废弃钻井液固液分离技术研究. 精细石油化工. 2024(02): 48-51 .
![]() | |
2. |
张颖,温钰奇,李辉,庞凯,罗会清. 高含水钻井固废超细颗粒过滤分离实验研究. 应用化工. 2024(02): 293-296 .
![]() | |
3. |
舒小波,陈俊斌,欧翔. 水基钻井液劣质固相控制及其现场应用. 石油地质与工程. 2023(05): 90-93+99 .
![]() | |
4. |
王景. 临兴–神府井区废弃钻井液处理技术. 石油钻探技术. 2022(01): 60-64 .
![]() | |
5. |
许毓,刘晓辉,马滢,谢水祥,任雯,张明栋,仝坤. 废水基钻井液中固相颗粒电吸附选择性实验. 石油钻采工艺. 2022(01): 31-36 .
![]() | |
6. |
谭敬鹏,李之军,沈建鑫. 基于电吸附理论的金刚石钻探超细固相清除技术实验研究. 四川地质学报. 2022(S1): 3-6+12 .
![]() |