Citation: | JING Shuai, XIAO Li, ZHANG Haolin, WANG Xi, ZHANG Feifei. A Method for Minimizing Annulus Pressure Loss by means of Hole Cleaning and Hydraulics Coupling[J]. Petroleum Drilling Techniques, 2020, 48(2): 56-62. DOI: 10.11911/syztjs.2020009 |
Drill cuttings accumulate in the wellbore during drilling and form a cutting bed, which results in the increase of annulus pressure loss. To solve problem of large annular pressure loss from insufficient hole cleaning, a methodology in this study was developed to model the relationships between hole cleaning and annular pressure loss by coupling cuttings transport and annular pressure loss based on mass and momentum conservation. By using the developed model, the influence of parameters such as displacement, wellbore inclination, annulus size, rate of penetration (ROP) and rheological parameters of drilling fluid on annular pressure loss and degree of hole cleanliness were analyzed. The results show that annular pressure loss in extended-reach wells and horizontal wells does not increase with the increase of displacement due to cuttings in the well, but a critical value exists. When the displacement is below the critical value, the annular pressure loss decreases with the increase of displacement. However, pressure loss will increases with the increase of displacement when the displacement exceeds the critical value. Based on this result, a new calculation method is proposed to minimize annulus pressure loss by hole cleaning and annulus hydraulic coupling, which can be used in drilling parameters, control annulus pressure loss optimization and to guide drilling design and operation.
[1] |
苏义脑,窦修荣. 大位移井钻井概况、工艺难点和对工具仪器的要求[J]. 石油钻采工艺, 2003, 25(1): 6–10. doi: 10.3969/j.issn.1000-7393.2003.01.022
SU Yinao, DOU Xiurong. General conndition and technical difficulties of extended reach well drilling and its requirements on tools and instruments[J]. Oil Drilling & Production Technology, 2003, 25(1): 6–10. doi: 10.3969/j.issn.1000-7393.2003.01.022
|
[2] |
MSSIE G W, SMITH J, LEE J W, et al. Amoco’s training initiative reduces wellsite drilling problems[J]. Petroleum Engineer International, 1995, 67(3): 30–45.
|
[3] |
LI J, LUFT B. Overview of solids transport studies and applications in oil and gas industry: experimental work[R]. SPE 171285, 2014.
|
[4] |
BUSCH A, ISLAM A, MARTINS, D W, et al. Cuttings-transport modeling: part 1: specification of benchmark parameters with a norwegian-continental-shelf perspective[J]. SPE Drilling & Completion, 2018, 33(2): 57–67.
|
[5] |
BIZHANI M, KURU E. Particle removal from sandbed deposits in horizontal annuli using viscoelastic fluids[J]. SPE Journal, 2018, 23(2): 256–273. doi: 10.2118/189443-PA
|
[6] |
ARNIPALLY S K, KURU E. Settling velocity of particles in viscoelastic fluids: a comparison of the shear-viscosity and elasticity effects[J]. SPE Journal, 2018, 23(5): 1689–1705. doi: 10.2118/187255-PA
|
[7] |
NAGANAWA S, SATO R, ISHIKAWA M. Cuttings-transport simulation combined with large-scale-flow-loop experimental results and logging-while-drilling data for hole-cleaning evaluation in directional drilling[J]. SPE Drilling & Completion, 2017, 32(3): 194–207.
|
[8] |
孙晓峰,纪国栋,冯松林,等. 幂律流体中岩屑颗粒沉降速度实验[J]. 断块油气田, 2016, 23(1): 120–124.
SUN Xiaofeng, JI Guodong, FENG Songlin, et al. Cuttings particle settling velocity within power law fluid[J]. Fault-Block Oil & Gas Field, 2016, 23(1): 120–124.
|
[9] |
ZHANG Feifei. Numerical simulation and experimental study of cuttings transport in intermediate inclined wells[D]. Tulsa: The University of Tulsa, 2015.
|
[10] |
MATOUSEK V. Pressure drops and flow patterns in sand-mixture pipes[J]. Experimental Thermal and Fluid Science, 2002, 26(6/7): 693–702.
|
[11] |
HYUN C, SUBHASH N S, OSISANYA, S O. A three-segment hydraulic model for cuttings transport in horizontal and deviated wells[R]. SPE 65488, 2000.
|
[12] |
NGUYEN D, RAHMAN S S. A three-layer hydraulic program for effective cuttings transport and hole cleaning in highly deviated and horizontal wells[R]. SPE 51186, 1998.
|
[13] |
OZBAYOGLU M E, MISKA S Z, REED T, et al. Cuttings transport with foam in horizontal and highly-inclined wellbores[R]. SPE 79856, 2003.
|
1. |
荆思霖,宋先知,孙一,许争鸣,周蒙蒙. 基于压差法的水平井岩屑床轴向运移规律研究. 石油钻探技术. 2024(01): 54-61 .
![]() | |
2. |
侯晓东,卢华涛,张爽,席志旭. 考虑参数不确定性的井筒压力实时校正方法研究. 自动化应用. 2024(08): 19-21 .
![]() | |
3. |
臧传贞,荆思霖,路宗羽,宋先知,武兴勇. 小井眼水平井洗井岩屑清除效率研究. 石油钻探技术. 2024(03): 75-83 .
![]() | |
4. |
舒惠龙,田中兰,付利,杨恒林,杨磊,范玉光. 水平井井眼清洁定量化监测评价技术. 石油钻探技术. 2023(02): 68-73 .
![]() | |
5. |
李果,陈建华,莫海涛,刘修刚. 煤矿区长水平定向钻进环空泥浆冲洗液最小排量计算方法研究. 煤炭技术. 2023(12): 196-199 .
![]() | |
6. |
胡金帅,张光伟,李峻岭,陈雨,闫丰平. 基于CFD-DEM耦合模型的岩屑运移数值模拟分析. 断块油气田. 2022(04): 561-566 .
![]() | |
7. |
韩雪莹,李衡,王汉卿,刘丹婷,张海超,夏成宇. 脉冲射流式岩屑床清理工具的研究. 机床与液压. 2022(18): 26-30 .
![]() | |
8. |
叶佳杰,孔祥伟,张雷,陈青,甘洲. 大肚子水平井钻井液性能对岩屑运移规律模拟分析. 当代化工. 2022(09): 2199-2202+2219 .
![]() | |
9. |
刘俊彦,林家昱,刘海龙,窦蓬. 渤海油田大位移定向钻井关键技术. 天津科技. 2021(04): 39-42 .
![]() | |
10. |
张洁,汤明,蒋振新,甘一风,曾德智. 椭圆井眼同心环空赫巴流体流动规律研究及压降计算简化模型. 特种油气藏. 2021(02): 156-162 .
![]() | |
11. |
宋昱播,刘修刚. 煤层底板灰岩多分支水平注浆井钻进摩扭分析及控制措施研究. 煤炭技术. 2021(08): 127-129 .
![]() | |
12. |
陈雨微,张菲菲,吴涛,王越之,王茜. 大位移井井眼清洁与ECD控制. 中国科技论文. 2021(09): 1017-1022 .
![]() |