Citation: | XI Pengfei, YANG Minghe, GUO Wangheng, SHI Jiangang. A Method for Identifying Abnormally Compacted Strata Based on the Fluctuation of Interval Transit Time Data[J]. Petroleum Drilling Techniques, 2019, 47(6): 111-115. DOI: 10.11911/syztjs.2019136 |
The fluctuation of interval transit time data can be caused by factors such as variable formation lithology which affects the accurate identification of abnormally compacted strata by interval transit time. Therefore, the fluctuation of interval transit time data in normally compacted sections was analyzed according to the relationship between the interval transit time and well depth at normally compacted mudstone section, by eliminating the invalid data points using a density data clustering method, made possible by means of wavelet theory and the probability analysis method. Research results showed that the density clustering method could effectively remove the anomalous data points. One wavelet decomposition could meet the requirement to describe the fluctuation of interval transit time data at the normally compacted section; the distribution fitting test indicated that the fluctuation of interval transit time data was consistent with tLocation–Scale probability distribution. Thus the abnormally compacted section could be quantitatively identified by constructing a probability calculation formula. The calculation results showed that the abnormally compacted section could be quantitatively identified by calculating the fluctuation probability of interval transit time, improve the identification accuracy of abnormally compacted section, and avoid the blindness and randomness of analysis. Similar analyses can be performed for other conventional logging data analyses based on the normal compaction curve of shale.
[1] |
CHILINGAR G V, SEREBRYAKOV V A, ROBERTSON J O Jr. Origin and prediction of abnormal formation pressures[J]. Developments in Petroleum Science, 2002, 50(1): 5–9.
|
[2] |
MOUCHET J P, MITCHELL A. Abnormal pressures while drilling[M]. Boussens: Elf Aquitaine Edition, 1989.
|
[3] |
王鸿升. 异常高地层压力研究现状概述[J]. 油气地球物理, 2015, 13(4): 58–63.
WANG Hongsheng. Summary of research status for abnormal high formation pressure[J]. Petroleum Geophysics, 2015, 13(4): 58–63.
|
[4] |
戴威,吴健. 应用小波降噪的测井数据预测异常压力[J]. 化学工程与装备, 2018(9): 185–189.
DAI Wei, WU Jian. Prediction of abnormal pressure using logging data with wavelet denoising[J]. Chemical Engineering & Equipment, 2018(9): 185–189.
|
[5] |
赖富强, 夏炜旭, 龚大建, 等. 基于小波高频属性的泥页岩裂缝测井识别方法研究[J/OL]. 地球物理学进展. http://kns.cnki.net/kcms/detail/11.2982.P.20190307.1305.028.html.
LAI Fuqiang, XIA Weixu, GONG Dajian, et al. Logging identification method of mud shale fractures based on wavelet high frequency attribute[J/OL]. Progress in Geophysics. http://kns.cnki.net/kcms/detail/11.2982.P.20190307.1305.028.html.
|
[6] |
林卫星,文劲宇,艾小猛, 等. 风电功率波动特性的概率分布研究[J]. 中国电机工程学报, 2012, 32(1): 38–46.
LIN Weixing, WEN Jinyu, AI Xiaomeng, et al. Probability density function of wind power variations[J]. Proceedings of the CSEE, 2012, 32(1): 38–46.
|
[7] |
陈庭根, 管志川. 钻井工程理论与技术[M]. 东营: 石油大学出版社, 2000: 11–13.
CHEN Tinggen, GUAN Zhichuan. The theory and technology about drilling engineering[M]. Dongying: Petroleum University Press, 2000: 11–13.
|
[8] |
伍育红. 聚类算法综述[J]. 计算机科学, 2015, 42(增刊1): 491–499, 524.
WU Yuhong. General overview on clustering algorithms[J]. Computer Science, 2015, 42(supplement1): 491–499, 524.
|
[9] |
王俊. 面向大数据的DBSCAN聚类算法研究[D]. 郑州: 解放军信息工程大学, 2017.
WANG Jun. Research on DBSCAN clustering algorithm oriented big data[D]. Zhengzhou: PLA Information Engineering University, 2017.
|
[10] |
马丽君,孙根年,王洁洁. 基于本底趋势线与小波函数的中国旅游成长及多周期分析[J]. 旅游科学, 2009, 23(6): 21–27. doi: 10.3969/j.issn.1006-575X.2009.06.004
MA Lijun, SUN Gennian, WANG Jiejie. An analysis of China's tourism growth and multicycle:Based on natural trend curve theory and wavelet analysis[J]. Tourism Science, 2009, 23(6): 21–27. doi: 10.3969/j.issn.1006-575X.2009.06.004
|
[11] |
王晓兰,王明伟. 基于小波分解和最小二乘支持向量机的短期风速预测[J]. 电网技术, 2010, 34(1): 179–184.
WANG Xiaolan, WANG Mingwei. Short-term wind speed forecasting based on wavelet decomposition and least square support vector machine[J]. Power System Technology, 2010, 34(1): 179–184.
|
[12] |
王明亮,孙德宙. Logistic分布预测林分直径结构的研究[J]. 林业科学研究, 1998(5): 86–90.
WANG Mingliang, SUN Dezhou. The forecasting of diameter-based clustering by using of Logistic distribution in forest[J]. Forest Research, 1998(5): 86–90.
|
[13] |
杨茂, 董骏城. 基于混合分布模型的风电功率波动特性研究[J]. 中国电机工程学报, 2016, 36(增刊1): 69–78.
YANG Mao, DONG Juncheng. Study on characteristics of wind power fluctuation based on mixed distribution model[J]. Proceedings of the CSEE, 2016, 36(supplement1): 69–78.
|
[14] |
费鹤良. 分布拟合优度检验方法综述[J]. 上海师范学院学报(自然科学版), 1982, 11(2): 129–142.
FEI Heliang. General overview on test method of distribution goodness of fit[J]. Journal of Shanghai Normal University(Natural Sciences), 1982, 11(2): 129–142.
|
[15] |
茆诗松.统计手册[M].北京: 科学出版社, 2003: 169–172.
MAO Shisong. Statistic brochure[M]. Beijing: Science Press, 2003: 169–172.
|
[16] |
盛骤, 谢式千, 潘承毅, 等.概率论与数理统计[M].北京: 高等教育出版社, 2008: 198–205.
SHENG Zhou, XIE Shiqian, PAN Chengyi, et al. Statistics and data analysis[M]. Beijing: Higher Education Press, 2008: 198–205.
|
1. |
曹华庆,燕建成,龙志平. 川东南页岩气井岩溶浅表层安全高效钻井技术. 石油钻探技术. 2023(02): 22-28 .
![]() | |
2. |
陈鹏飞,李文良,夏环宇,倪益民. 变形隔水导管开窗再利用技术. 科学技术创新. 2022(17): 89-92 .
![]() | |
3. |
陈鹏飞,倪益民,吴事难,王莉,郑伟. 渤海地区侧钻作业液压举升装置安装方式优选. 化工管理. 2022(20): 118-121 .
![]() | |
4. |
杨海东,汪俊锋. 强攻击型镶齿牙轮钻头设计关键技术及应用. 天然气与石油. 2021(06): 102-106 .
![]() |