ZHENG Yiting, FANG Fang, WU Jinping, QIAN Deru, ZHANG Wei. Rapid Sinusoidal Fitting Method for Near-Bit Gamma Imaging While Drilling[J]. Petroleum Drilling Techniques, 2019, 47(6): 116-122. DOI: 10.11911/syztjs.2019101
Citation: ZHENG Yiting, FANG Fang, WU Jinping, QIAN Deru, ZHANG Wei. Rapid Sinusoidal Fitting Method for Near-Bit Gamma Imaging While Drilling[J]. Petroleum Drilling Techniques, 2019, 47(6): 116-122. DOI: 10.11911/syztjs.2019101

Rapid Sinusoidal Fitting Method for Near-Bit Gamma Imaging While Drilling

More Information
  • Received Date: January 07, 2019
  • Revised Date: August 19, 2019
  • Available Online: September 10, 2019
  • Seeking to solve the problem of low transmission rate of existing LWD data and the demands on real-time gamma imaging, sector gamma-ray imaging characteristics were simulated and analyzed. This occurred while a near bit gamma-ray imaging tool crossing inclined interface moving from low-level radioactive sandstone to high-level radioactive mudstone, and thus a rapid sinusoidal fitting method based on the sector gamma imaging was proposed. Based on the studies, a rapid sinusoidal fitting firmware algorithm for near-bit gamma imaging logging was designed. This algorithm combined the least squares frequency estimation and 3-parameter sine fitting to obtain the 4 parameters of the sinusoid, such as amplitude, frequency, phase and DC component, hence obtaining the multi-sector gamma imaging through fitting inversion. By using the fast sinusoidal fitting method, the gamma data was acquired in the simulated wellbore fabricated with the standard rock samples and layered dipping strata, and the fitting of multi-sector gamma imaging measurement was realized with a small fitting error. The results showed that the sinusoidal features of the 8-sector gamma image obtained by fitting inversion were clear and they could accurately reflect the information of the inclined strata interface, which verified the correctness and feasibility of the fast sinusoidal fitting method.

  • [1]
    马永生,蔡勋育,赵培荣. 石油工程技术对油气勘探的支撑与未来攻关方向思考: 以中国石化油气勘探为例[J]. 石油钻探技术, 2016, 44(2): 1–9.

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. The support of petroleum engineering technologies in trends in oil and gas exploration and development: case study on oil and gas exploration in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1–9.
    [2]
    王敏生,光新军, 皮光林,等. 低油价下石油工程技术创新特点及发展方向[J]. 石油钻探技术, 2018, 46(6): 1–8.

    WANG Minsheng, GUANG Xinjun, PI Guanglin, et al. The characteristics of petroleum engineering technology design and innovation in a low oil price environment[J]. Petroleum Drilling Techniques, 2018, 46(6): 1–8.
    [3]
    PITCHER J L, SCHAFER D B, BOTTERELL P, el al. A new azimuthal gamma at bit imaging tool for geosteering thin reservoirs[R]. SPE 118328, 2009.
    [4]
    WHEELER A J, BILLINGS T, RENNIE A, et al. The introduction of an at-bit natural gamma ray imaging tool reduces risk associated with real-time geosteering decisions in coalbed methane horizontal wells[R]. SPWLA -2012-167, 2012.
    [5]
    SUH A, JAMES B, FELTHAM G. Overcoming complex geosteering challenges in the Cardium Reservoir of the Foothills of Canada to increase production using an instrumented mud motor with near bit azimuthal gamma ray and inclination[R]. SPE 173036, 2015.
    [6]
    MINETTE D C. Method for analyzing formation data from a formation evaluation MWD logging tool: US5091644[P]. 1992-02-25.
    [7]
    SPROSS R L. Methods for determining characteristics of earth formations: US6619395B2[P]. 2003–09–16.
    [8]
    BITTAR M, CHEMALI R, MORYS M, et al. The " depth-of-electrical image” a key parameter in accurate dip computation and geosteering[R]. SPWLA-2008-TT, 2008.
    [9]
    McKINNY K, BOONEN P, HUISZOON C. Analysis of density image dip angle calculations[R]. SPWLA-2008-ZZ, 2008.
    [10]
    袁超,周灿灿,张锋,等. MC模拟在随钻方位伽马成像正演中的应用[J]. 原子核物理评论, 2014, 31(4): 505–510. doi: 10.11804/NuclPhysRev.31.04.505

    YUAN Chao, ZHOU Cancan, ZHANG Feng, et al. Application of Monte Carlo method in forward simulation of azimuthal gamma imaging while drilling[J]. Nuclear Physics Review, 2014, 31(4): 505–510. doi: 10.11804/NuclPhysRev.31.04.505
    [11]
    WANG Jiaxin, HUISZOON C, XU Libai, et al. Quantitative study of natural Gamma ray depth of image and dip angle calculations[R]. SPWLA-2013-BBB, 2013.
    [12]
    卢俊强,鞠晓东,乔文孝, 等. 数字信号处理器在随钻声波测井仪中的应用[J]. 测井技术, 2013, 37(5): 527–530. doi: 10.3969/j.issn.1004-1338.2013.05.014

    LU Junqiang, JU Xiaodong, QIAO Wenxiao, et al. Application of digital signal processor to acoustic LWD tool[J]. Well Logging Technology, 2013, 37(5): 527–530. doi: 10.3969/j.issn.1004-1338.2013.05.014
    [13]
    LEONARD Z S, RAHMAN S, STEINSIEK R R, el al. Development of transducer and electronics technology for an LWD ultrasonic imaging tool[R]. OTC 27758, 2017.
    [14]
    IEEE Std 1057–1994 IEEE standard for digitizing waveform recorders[S].
    [15]
    IEEE Std 1057–2017 IEEE standard for digitizing waveform recorders[S].
  • Related Articles

    [1]YANG Chunhe, WANG Lei, ZENG Yijin, GUO Yintong, YANG Guangguo, LIU Kui. A Laboratory Method for Evaluating the Bonding Tensile Strength of the Cement–Formation Interface Considering Multiple Factors[J]. Petroleum Drilling Techniques, 2023, 51(4): 48-54. DOI: 10.11911/syztjs.2023041
    [2]SONG Xiaojian, ZHENG Bangxian, TAN Yongzhi, HUANG Bingya, MA Hongyan, DONG Chenxi. Dynamic Measurement Method of Near-Bit Borehole Trajectory Parameters Based on Data Fusion[J]. Petroleum Drilling Techniques, 2022, 50(1): 38-44. DOI: 10.11911/syztjs.2021054
    [3]LI Hongqiang, WANG Ruihe. Research on Environmental Correction Method of Measurement Results from Near-Bit Gamma Imagers[J]. Petroleum Drilling Techniques, 2021, 49(3): 142-150. DOI: 10.11911/syztjs.2021024
    [4]YU Hongmin, WANG Youqi, NIE Jun, LYU Chengyuan, CUI Wenfu, ZHANG Li. Study and Application of a Correction Method for the Relative Permeability Curve of a High Water Injection Multiple[J]. Petroleum Drilling Techniques, 2018, 46(4): 104-108. DOI: 10.11911/syztjs.2018080
    [5]LU Fawei, WANG Jianping, CHEN Jinlong. Resistivity Determination Methods in Original Formations[J]. Petroleum Drilling Techniques, 2016, 44(5): 117-121. DOI: 10.11911/syztjs.201605020
    [6]Wang Qian, Li Guoli, Li Zhen, Su Bo, Hong Yinglin. A Method to Predict 2D Reservoir Interfaces in Geosteering[J]. Petroleum Drilling Techniques, 2015, 43(3): 87-95. DOI: 10.11911/syztjs.201503017
    [7]Bai Yuhu, Yang Hao, Chen Guihua, Feng Ruyong. An Uncertainty Analysis Method on Typical Production Decline Curve for Shale Gas Reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(4): 97-100. DOI: 10.3969/j.issn.1001-0890.2013.04.021
    [8]Zhang Guilin. "Liquid Volume Stable" Managed Pressure Drilling Method[J]. Petroleum Drilling Techniques, 2013, 41(4): 54-58. DOI: 10.3969/j.issn.1001-0890.2013.04.012
    [9]Yan Tie, Xu Ting, Bi Xueliang, Yu Yang. Wellhead Arranged Method of Cluster Well Pad[J]. Petroleum Drilling Techniques, 2013, 41(2): 13-16. DOI: 10.3969/j.issn.1001-0890.2013.02.003
    [10]Discussion of Evaluation Method of Cementing Flushing Efficiency[J]. Petroleum Drilling Techniques, 2011, 39(2): 77-80. DOI: 10.3969/j.issn.1001-0890.2011.02.015
  • Cited by

    Periodical cited type(7)

    1. 王忠良,徐文远,王文泽,梁梅,贺杰,钱晨,邹华宝. 结合伽马成像技术的三维地质建模在页岩油地质导向中的应用. 西安石油大学学报(自然科学版). 2024(02): 112-119 .
    2. 曲博文,谭宝海,张凯,陈雪莲. 自适应声波测井换能器激励电路设计. 石油钻探技术. 2024(06): 141-147 . 本站查看
    3. 孙轶伦,潘磊,李海滨,王来智,周建新. 旋转导向近钻头随钻伽马数据成像处理技术. 石油地质与工程. 2022(01): 99-103+108 .
    4. 刘卫彬,徐兴友,张君峰,陈珊,白静,刘畅,李耀华. 陆相页岩地层地质-工程一体化水平井精确钻探技术——以松辽盆地吉页油1HF井为例. 中国地质. 2022(06): 1808-1822 .
    5. 马荣华,赵嵩. 基于果蝇算法的空间机械臂最优抑振轨迹规划方法. 机械设计与研究. 2022(06): 49-52 .
    6. 李继博,钱德儒,郑奕挺,张卫,吴金平. 近钻头伽马高精度实时成像技术研究与应用. 石油钻探技术. 2021(03): 135-141 . 本站查看
    7. 李洪强,王瑞和. 近钻头伽马成像仪测量结果环境校正方法研究. 石油钻探技术. 2021(03): 142-150 . 本站查看

    Other cited types(4)

Catalog

    Article Metrics

    Article views (1469) PDF downloads (108) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return