Citation: | ZHOU Dan, XIONG Xudong, HE Junbang, DONG Bo, HE Yong. Multi-Stage Deflective Fracturing Technology for Low Permeability Reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85-89. DOI: 10.11911/syztjs.2019077 |
Problems such as small sweeping volume, short longevity and poor fracturing stimulation effects are common when conventional fracturing technology is adopted in low permeability reservoirs. In order to improve the production of low-permeability oil and gas fields, a high-performance temporary bridging agent with high solubility, fast dissolution rate, low residue content and low damage to permeability was developed with deployment using an innovative multi-stage deflective fracturing technology. These were developed based on geological characteristics of the reservoir and the initiation mechanism of multi-stage deflective fracturing. When the formation is fractured, a temporary bridging agent is added in the frac fluid in real time to form instantaneous temporary bridging at the opening of fractures. These result increased net pressure within fractures, and generate microfractures and branch fractures, thus forming complex network fractures and achieving the goal of volumetric stimulation. After the application of multi-stage deflective fracturing technology in Block X of the Xinjiang Oilfield, oil production dramatically increased, and daily oil increment per well is 2.0 times that of wells with conventional fracturing technique. In addition, this method results in a longer stable production period, and the longevity is 50% higher than that with conventional fracturing. The application of multi-stage deflective fracturing technology can solve the problem of reservoir stimulation in low permeability conglomerate reservoirs and provided a new technical mean for achieving stable production in the late production period of low permeability conglomerate reservoirs.
[1] |
李阳, 姚飞, 翁定为, 等.重复压裂技术的发展及展望[J].石油天然气学报, 2005, 27(增刊5): 789–791.
LI Yang, YAO Fei, WENG Dingwei, et al. Development and prospect of repeated fracturing technology[J]. Journal of Oil and Gas Technology, 2005, 27(supplement 5):789–791.
|
[2] |
ELBEL J L, MACK M G. Refracturing: observations and theories[R]. SPE 25464, 1993.
|
[3] |
郭大立,赵金洲,吴刚,等. 堵压综合采油技术研究与应用[J]. 石油钻采工艺, 1999, 21(6): 73–76.
GUO Dali, ZHAO Jinzhou, WU Gang, et al. Research and application of complex plugging and fracturing production technique[J]. Oil Drilling & Production Technology, 1999, 21(6): 73–76.
|
[4] |
黄源琳,郭建春,苗晋伟,等. 转向压裂工艺研究及应用[J]. 油气井测试, 2008, 17(4): 53–54, 57. doi: 10.3969/j.issn.1004-4388.2008.04.021
HUANG Yuanlin, GUO Jianchun, MIAO Jianwei, et al. Study and application of turnaround fracture technology[J]. Well Testing, 2008, 17(4): 53–54, 57. doi: 10.3969/j.issn.1004-4388.2008.04.021
|
[5] |
刘进军,古丽曼,解利军,等. 转向压裂技术在准东油田的应用[J]. 新疆石油天然气, 2007, 3(3): 56–58. doi: 10.3969/j.issn.1673-2677.2007.03.014
LIU Jinjun, GU Liman, XIE Lijun, et al. Application of turnaround fracture technology in Zhundong Oilfield[J]. Xinjiang Oil and Gas, 2007, 3(3): 56–58. doi: 10.3969/j.issn.1673-2677.2007.03.014
|
[6] |
时玉燕,刘晓燕,赵伟,等. 裂缝暂堵转向重复压裂技术[J]. 海洋石油, 2009, 29(2): 60–64. doi: 10.3969/j.issn.1008-2336.2009.02.012
SHI Yuyan, LIU Xiaoyan, ZHAO Wei, et al. Turnaround refracturing technology applied to change crack direction[J]. Offshore Oil, 2009, 29(2): 60–64. doi: 10.3969/j.issn.1008-2336.2009.02.012
|
[7] |
张全胜,李明,张子麟,等. 胜利油田致密油储层体积压裂技术及应用[J]. 中国石油勘探, 2019, 24(2): 233–240.
ZHANG Quansheng, LI Ming, ZHANG Zilin, et al. Application of volume fracturing technology in tight oil reservoirs of Shengli Oilfield[J]. China Petroleum Exploration, 2019, 24(2): 233–240.
|
[8] |
苏良银,白晓虎,陆红军,等. 长庆超低渗透油藏低产水平井重复改造技术研究及应用[J]. 石油钻采工艺, 2017, 39(4): 521–527.
SU Liangyin, BAI Xiaohu, LU Hongjun, et al. Study on repeated stimulation technology and its application to in low-yield horizontal wells in ultra low permeability oil reservoirs, Changqing Oilfield[J]. Oil Drilling & Production Technology, 2017, 39(4): 521–527.
|
[9] |
陶亮,郭建春,李凌铎,等. 致密油藏水平井重复压裂多级选井方法研究[J]. 特种油气藏, 2018, 25(4): 67–71.
TAO Liang, GUO Jianchun, LI Lingduo, et al. Multi-stage well selection for refracturing operations in horizontal wells for tight oil reservoir development[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 67–71.
|
[10] |
王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术[J]. 石油钻探技术, 2018, 46(2): 81–86.
WANG Kun, GE Tengze, ZENG Wenting. Re-fracturing technique using forced fracture re-orientation of low production oil and gas wells[J]. Petroleum Drilling Techniques, 2018, 46(2): 81–86.
|
[11] |
李玮,纪照生. 暂堵转向压裂机理有限元分析[J]. 断块油气田, 2016, 23(4): 514–517.
LI Wei, JI Zhaosheng. Finite element analysis of temporary plugging and fracturing mechanism[J]. Fault-Block Oil & Gas Field, 2016, 23(4): 514–517.
|
[12] |
霍斐斐,王海军,翁旭,等. 转向重复压裂技术在陕北低渗透油田的应用[J]. 石油地质与工程, 2011, 25(4): 95–97. doi: 10.3969/j.issn.1673-8217.2011.04.029
HUO Feifei, WANG Haijun, WENG Xu, et al. Application of turning repeated fracturing technology in low permeability oilfields in Northern Shaanxi[J]. Petroleum Geology and Engineering, 2011, 25(4): 95–97. doi: 10.3969/j.issn.1673-8217.2011.04.029
|
[13] |
唐述凯,李明忠,綦民辉,等. 重复压裂前诱导应力影响新裂缝转向规律[J]. 断块油气田, 2017, 24(4): 557–560.
TANG Shukai, LI Mingzhong, QI Minhui, et al. Study of fracture reorientation caused by induced stress before re-fracturing[J]. Fault-Block Oil & Gas Field, 2017, 24(4): 557–560.
|
[14] |
胡益涛. 地应力场对井眼破裂压力的影响规律研究[J]. 石油化工应用, 2018, 37(11): 41–43, 47. doi: 10.3969/j.issn.1673-5285.2018.11.011
HU Yitao. Study on the influence of in-situ stress field on wellbore fracture pressure[J]. Petrochemical Applications, 2018, 37(11): 41–43, 47. doi: 10.3969/j.issn.1673-5285.2018.11.011
|
[15] |
薛亚斐,温哲豪,沈云波,等. 绒囊暂堵转向压裂裂缝转向能力及其力学机理分析[J]. 石油钻采工艺, 2018, 40(5): 633–640.
XUE Yafei, WEN Zhehao, SHEN Yunbo, et al. Analysis on the fracture diverting capacity and mechanical mechanisms of fuzzy-ball temporary plugging, diverting and fracturing technology[J]. Oil Drilling & Production Technology, 2018, 40(5): 633–640.
|
[16] |
郭建春,尹建,赵志红. 裂缝干扰下页岩储层压裂形成复杂裂缝可行性[J]. 岩石力学与工程学报, 2014, 33(8): 1589–1596.
GUO Jianchun, YIN Jian, ZHAO Zhihong. Feasibility of formation of complex fractures under cracks interference in shale reservoir fracturing[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1589–1596.
|
[17] |
马海洋,罗明良,温庆志,等. 转向压裂用可降解纤维优选及现场应用[J]. 特种油气藏, 2018, 25(6): 145–149.
MA Haiyang, LUO Mingliang, WEN Qingzhi, et al. Degradable fiber optimization and field application in diverting fracturing[J]. Special Oil & Gas Reservoirs, 2018, 25(6): 145–149.
|
[18] |
王彦玲,原琳,任金恒. 转向压裂暂堵剂的研究及应用进展[J]. 科学技术与工程, 2017, 17(32): 196–204.
WANG Yaning, YUAN Lin, REN Jinheng. The progress in research and application of temporary plugging agent for diverting fracturing[J]. Science Technology and Engineering, 2017, 17(32): 196–204.
|
[19] |
严衡文. 油藏含油系数的确定及其在油藏评价中的意义[J]. 石油学报, 1983, 4(1): 37–43.
YAN Hengwen. Determination of oil-bearing coefficient N and its significance in reservoir evaluation[J]. Acta Peitrolei Sinaca, 1983, 4(1): 37–43.
|
[20] |
丁云宏,胥云,翁定为,等. 低渗透油气田压裂优化设计新方法[J]. 天然气工业, 2009, 29(9): 78–80.
DING Yunhong, XU Yun, WENG Dingwei, et al. A new method of fracturing optimization design for low-permeability oil and gas fields[J]. Natural Gas Industry, 2009, 29(9): 78–80.
|
[21] |
陈作,何青,王宝峰,等. 大牛地气田长水平段水平井分段压裂优化设计技术[J]. 石油钻探技术, 2013, 41(6): 82–85.
CHEN Zuo, HE Qing, WU Chunfang, et al. Design optimization of staged fracturing for long lateral horizontal wells in Daniudi Gas Field[J]. Petroleum Drilling Techniques, 2013, 41(6): 82–85.
|
[22] |
齐银,白晓虎,宋辉,等. 超低渗透油藏水平井压裂优化及应用[J]. 断块油气田, 2014, 21(4): 483–485.
QI Yin,BAI Xiaohu,SONG Hui,et al. Fracturing optimization and application of horizontal wells in ultra-low permeability reservoir[J]. Fault-Block Oil & Gas Field, 2014, 21(4): 483–485.
|
1. |
王贤君,刘宇,孙丽静,马德成,胡智凡. 基于分支缝真实起裂方向的分支缝形成条件研究. 采油工程. 2025(01): 75-78+88 .
![]() | |
2. |
薛长荣,陈润生. 低渗透油田压裂技术研究分析. 石化技术. 2024(06): 117-119 .
![]() | |
3. |
王纪伟,宋丽阳,康玉柱. 暂堵转向技术在页岩油气中的应用分析与发展方向. 断块油气田. 2024(06): 1122-1128 .
![]() | |
4. |
王哲,曹广胜,白玉杰,王培伦,王鑫. 低渗透油藏提高采收率技术现状及展望. 特种油气藏. 2023(01): 1-13 .
![]() | |
5. |
刘彝,刘玲,姜喜梅,于洋洋,吴均. 大斜度井精细分段压裂技术研究及应用. 中国矿业. 2023(S1): 470-474 .
![]() | |
6. |
邹龙庆,何怀银,杨亚东,龚新伟,肖剑锋,苌北. 页岩气水平井暂堵球运移特性数值模拟研究. 石油钻探技术. 2023(05): 156-166 .
![]() | |
7. |
于海山,刘洪俊,王庆太. 低渗透油田套损井压裂技术应用与效果分析. 石油石化节能与计量. 2023(10): 17-21 .
![]() | |
8. |
刘彝,杨辉,吴佐浩. 强变形暂堵转向压裂技术研究及应用. 钻井液与完井液. 2022(01): 114-120 .
![]() | |
9. |
胡智凡. 大庆低渗透储层直井多分支缝重复压裂提产试验. 采油工程. 2022(01): 16-20+81-82 .
![]() | |
10. |
达引朋,李建辉,王飞,黄婷,薛小佳,余金柱. 长庆油田特低渗透油藏中高含水井调堵压裂技术. 石油钻探技术. 2022(03): 74-79 .
![]() | |
11. |
刘尧文,明月,张旭东,卞晓冰,张驰,王海涛. 涪陵页岩气井“套中固套”机械封隔重复压裂技术. 石油钻探技术. 2022(03): 86-91 .
![]() | |
12. |
何成江,姜应兵,文欢,李翔. 塔河油田缝洞型油藏“一井多控”高效开发关键技术. 石油钻探技术. 2022(04): 37-44 .
![]() | |
13. |
胡智凡,王贤君,王晓娟,王维,陈希迪. 直井缝内暂堵转向压裂分支缝起裂方向研究. 石油地质与工程. 2022(05): 111-114 .
![]() | |
14. |
张金发,李亭,吴警宇,管英柱,徐摩,但植华,周明秀. 特低渗透砂岩储层敏感性评价与酸化增产液研制. 特种油气藏. 2022(05): 166-174 .
![]() | |
15. |
张瀚澜,赖小娟,王鹏程,杨文飞,刘学文,马锐,曹建坤,杨明亮. 新型自降解压裂转向材料的合成与表征. 科学技术与工程. 2022(35): 15586-15591 .
![]() | |
16. |
王贤君,胡智凡,张洪涛,陈希迪,王维. 大庆外围低渗透油田直井多分支缝压裂提产技术. 石油钻采工艺. 2022(05): 632-636 .
![]() | |
17. |
朱瑞彬,王鑫,许正栋,刘国华,李凝,龙长俊,宋立,贾江芬. 吉兰泰浅层变质岩储层水平井压裂技术. 石油钻采工艺. 2022(06): 733-739 .
![]() | |
18. |
秦浩,汪道兵,李敬法,孙东亮,宇波. 基于黏聚层单元的缝内暂堵压力演化规律的有限元数值研究. 科学技术与工程. 2021(10): 4011-4019 .
![]() | |
19. |
王磊,盛志民,赵忠祥,宋道海,王丽峰,王刚. 吉木萨尔页岩油水平井大段多簇压裂技术. 石油钻探技术. 2021(04): 106-111 .
![]() | |
20. |
侯祥丽,邓璐. 石油低渗透储层安全损害评价方法. 能源与环保. 2021(09): 142-148 .
![]() | |
21. |
武月荣,高岗,谷向东. 苏里格气田水平井段内精细分簇压裂技术研究与应用. 钻采工艺. 2021(06): 59-63 .
![]() | |
22. |
王晓蕾,张超会,张洪涛,胡智凡,魏天超. 致密油储层直井多分支缝压裂提产试验. 采油工程. 2021(02): 11-16+91 .
![]() | |
23. |
梁玉凯,于晓聪,袁辉,阚长宾,陶世林,马丁. 低渗透油藏自发生成中相微乳液洗油体系. 油田化学. 2021(04): 690-696 .
![]() | |
24. |
王峻源,徐太平,周京伟,袁发明. 高强度长效暂堵剂在水平井重复压裂上的应用. 化工设计通讯. 2020(08): 83-85 .
![]() | |
25. |
岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用. 油气藏评价与开发. 2020(05): 70-76 .
![]() | |
26. |
蔡卓林,赵续荣,南荣丽,陈华生,李秀辉,梁天博. 暂堵转向结合高排量体积重复压裂技术. 断块油气田. 2020(05): 661-665 .
![]() | |
27. |
覃孝平,吴均,李翠霞,卢军凯. 压裂用水溶性暂堵剂的合成及性能. 石油化工. 2020(09): 898-904 .
![]() | |
28. |
李翠霞,覃孝平,张琰,赵彬. 水溶性AM-AA-NVP-AMPS-PDE暂堵剂的合成与性能. 化学研究与应用. 2020(10): 1884-1890 .
![]() | |
29. |
施建国,于洋,王黎,李立,宋志龙. 超大粒径暂堵剂注入装置研究. 石油矿场机械. 2020(06): 74-78 .
![]() |