Loading [MathJax]/jax/output/SVG/jax.js
DI Qinfeng, WU Zhihao, WANG Wenchang, QIN Guangxu, CHEN Feng. An Prediction Method for Determining the Maximum von Mises Stress in Casing Based on SVM[J]. Petroleum Drilling Techniques, 2019, 47(3): 62-67. DOI: 10.11911/syztjs.2019065
Citation: DI Qinfeng, WU Zhihao, WANG Wenchang, QIN Guangxu, CHEN Feng. An Prediction Method for Determining the Maximum von Mises Stress in Casing Based on SVM[J]. Petroleum Drilling Techniques, 2019, 47(3): 62-67. DOI: 10.11911/syztjs.2019065

An Prediction Method for Determining the Maximum von Mises Stress in Casing Based on SVM

More Information
  • Received Date: February 27, 2019
  • Available Online: April 29, 2019
  • In order to predict the maximum stress of uncentered casing under non-uniform in-situ stress and improve the safety of casing, a prediction method of casing’s maximum von Mises stress based on artificial intelligence SVM is studied. First, the key factors affecting the maximum stress of casing are determined, including non-uniform geologic stress, elastic modulus and Poisson's ratio of cement sheath, eccentricity of casing, etc. Then the "experimental" samples of casing stress are constructed by using ANSYS software. Finally the εSVR model is established to realize the prediction of casing’s maximum stress. Through self-learning, the SVM regression method based on RBF kernel achieves good accuracy for training samples. For the five test samples, the average relative error is only 1.32%, which means that this method can meet the needs of engineering application. In particular, this method can be used to quickly solve the maximum stress of uncentered casing under non-uniform in-situ stress.The research results provide theoretical basis for site safety construction.

  • [1]
    American Petroleum Institute. API BULLETIN 5C3: bulletin on formulas and calculations of casing, tubing, drill pipe and line pipe properties[S]. 1994-10-01.
    [2]
    HAN J Z, SHI T H. Nonuniform loading affects casing collapse resistance[J]. Oil & Gas Journal, 2001, 99(25): 45–48.
    [3]
    李军, 陈勉, 柳贡慧,等. 套管、水泥环及井壁围岩组合体的弹塑性分析[J]. 石油学报, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023

    LI Jun, CHEN Mian, LIU Gonghui, et al. Elastic-plastic analysis of casing-concrete sheath-rock combination[J]. Acta Petrolei Sinica, 2005, 26(6): 99–103. doi: 10.3321/j.issn:0253-2697.2005.06.023
    [4]
    殷有泉,李平恩. 非均匀载荷下套管强度的计算[J]. 石油学报, 2007, 28(6): 138–141. doi: 10.3321/j.issn:0253-2697.2007.06.029

    YIN Youquan, LI Ping’en. Computation of casing strength under non-uniform load[J]. Acta Petrolei Sinica, 2007, 28(6): 138–141. doi: 10.3321/j.issn:0253-2697.2007.06.029
    [5]
    李国庆. 套管水泥环组合应力计算边界条件分析[J]. 石油钻探技术, 2012, 40(2): 20–24. doi: 10.3969/j.issn.1001-0890.2012.02.004

    LI Guoqing. Analysis of boundary condition of stress calculation on casing/cement-sheath[J]. Petroleum Drilling Techniques, 2012, 40(2): 20–24. doi: 10.3969/j.issn.1001-0890.2012.02.004
    [6]
    CHEN Zhanfeng, ZHU Weiping, DI Qinfeng. Elasticity solution for the casing under linear crustal stress[J]. Engineering Failure Analysis, 2018, 84: 185–195. doi: 10.1016/j.engfailanal.2017.11.007
    [7]
    李子丰,张永贵,阳鑫军. 蠕变地层与油井套管相互作用力学模型[J]. 石油学报, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026

    LI Zifeng, ZHANG Yonggui, YANG Xinjun. Mechanics model for interaction between creep formation and oil well casing[J]. Acta Petrolei Sinica, 2009, 30(1): 129–131. doi: 10.3321/j.issn:0253-2697.2009.01.026
    [8]
    徐守余,李茂华,牛卫东. 水泥环性质对套管抗挤强度影响的有限元分析[J]. 石油钻探技术, 2007, 35(3): 5–8. doi: 10.3969/j.issn.1001-0890.2007.03.002

    XU Shouyu, LI Maohua, NIU Weidong. Finite element analysis of effect of cement sheath property on casing collapsing strength[J]. Petroleum Drilling Techniques, 2007, 35(3): 5–8. doi: 10.3969/j.issn.1001-0890.2007.03.002
    [9]
    李子丰,杨海军,陈飞. 蠕变性地层中套管有效外挤压力的计算方法探讨[J]. 石油钻探技术, 2014, 42(3): 13–15.

    LI Zifeng, YANG Haijun, CHEN Fei. The calculation of the effective external pressure on casing in creep formation[J]. Petroleum Drilling Techniques, 2014, 42(3): 13–15.
    [10]
    RODRIGUEZ W J, FLECKENSTEIN W W, EUSTES A W. Simulation of collapse loads on cemented casing using finite element analysis[R]. SPE 84566, 2003.
    [11]
    PATTILLO P D, LAST N C, ASBILL W T. Effect of nonuniform loading on conventional casing collapse resistance[J]. SPE Drilling & Completion, 2004, 19(3): 156–163.
    [12]
    NABIPOUR A, JOODI B, SARMADIVALEH M. Finite element simulation of downhole stresses in deep gas wells cements[R]. SPE 132156, 2010.
    [13]
    窦益华. 粘弹性围岩中套管与井眼不同心时套管围压分析[J]. 石油钻采工艺, 1989, 11(4): 1–6.

    DOU Yihua. Analysis of casing confining pressure when casing and borehole are not concentric in viscoelastic surrounding rock[J]. Oil Driling & Production Technology, 1989, 11(4): 1–6.
    [14]
    CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273–297.
    [15]
    CHEN Wei, DI Qinfeng, YE Feng, et al. Flowing bottomhole pressure prediction for gas wells based on support vector machine and random samples selection[J]. International Journal of Hydrogen Energy, 2017, 42(29): 18333–18342. doi: 10.1016/j.ijhydene.2017.04.134
    [16]
    朱国强,刘士荣,俞金寿. 支持向量机及其在函数逼近中的应用[J]. 华东理工大学学报, 2002, 28(5): 555–559, 568. doi: 10.3969/j.issn.1006-3080.2002.05.023

    ZHU Guoqiang, LIU Shirong, YU Jinshou. Support vector machine and its applications to function approximation[J]. Journal of East China University of Science and Technology, 2002, 28(5): 555–559, 568. doi: 10.3969/j.issn.1006-3080.2002.05.023
    [17]
    白鹏, 张喜斌, 张斌, 等.支持向量机理论及其工程应用实例[M].西安: 西安电子科技大学出版社, 2008: 53-56.

    BAI Peng, ZHANG Xibin, ZHANG Bin, et al. Support vector machine and its application in mixed gas infrared spectrum analysis[M]. Xi’an: Xidian University Press, 2008: 5-56.
    [18]
    成鹏,汪西莉. SVR参数对非线性函数拟合的影响[J]. 计算机工程, 2011, 37(3): 189–191, 194. doi: 10.3969/j.issn.1000-3428.2011.03.067

    CHENG Peng, WANG Xili. Influence of SVR parameter on non-linear function approximation[J]. Computer Engineering, 2011, 37(3): 189–191, 194. doi: 10.3969/j.issn.1000-3428.2011.03.067
    [19]
    王国华,陈正茂,熊继有, 等. 非均匀载荷下套管偏心对套管强度影响研究[J]. 石油天然气学报, 2012, 34(10): 105–107. doi: 10.3969/j.issn.1000-9752.2012.10.025

    WANG Guohua, CHEN Zhengmao, XIONG Jiyou, et al. The effect of casing eccentricity on the casing strength under non-uniformity load[J]. Journal of Oil and Gas Technology, 2012, 34(10): 105–107. doi: 10.3969/j.issn.1000-9752.2012.10.025
    [20]
    陈占锋,朱卫平,狄勤丰,等. 非均匀地应力下套管偏心对抗挤强度的影响[J]. 上海大学学报(自然科学版), 2012, 18(1): 83–86.

    CHEN Zhanfeng, ZHU Weiping, DI Qinfeng, et al. Effects of eccentricity of casing on collapse resistance in non-uniform in-situ stresses[J]. Journal of Shanghai University(Natural Science Edition), 2012, 18(1): 83–86.
    [21]
    赵德安, 陈志敏, 蔡小林, 等. 中国地应力场分布规律统计分析[J]. 岩石力学与工程学报, 2007, 26(6): 1265–1271. doi: 10.3321/j.issn:1000-6915.2007.06.024

    ZHAO Dean, CHEN Zhiming, CAI Xiaolin, et al. Analysis of distribution rule of geostress in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1265–1271. doi: 10.3321/j.issn:1000-6915.2007.06.024
    [22]
    程文瀼.混凝土结构: 上册: 混凝土结构设计原理[M].北京: 中国建筑工业出版社, 2005: 15-17.

    CHENG Wenxiang. Concrete structure: part A: design principle of concrete structure[M]. Beijing: China Architecture & Building Press, 2005: 15-17.
  • Cited by

    Periodical cited type(2)

    1. 龚勇,蒋凯,闫许峰,康建平,林黎明. 钻具旋转时同心窄间隙环空流动的数值模拟. 钻探工程. 2023(06): 56-62 .
    2. 田野,蒋东雷,马传华,徐一龙,于晓东,宋洵成. 钻柱偏心旋转对环空摩阻压降影响的数值模拟研究. 石油钻探技术. 2022(05): 42-49 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (5087) PDF downloads (66) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return