Citation: | WEI Hongshu, DU Qingjie, CAO Bobo, WANG Zhiyuan, SUN Baojiang, LIU Zheng. The Ascending Law of Gas Bubbles in a Wellbore Considering the Phase Change of Natural Gas Hydrates during Deepwater Well Shut-in[J]. Petroleum Drilling Techniques, 2019, 47(2): 42-49. DOI: 10.11911/syztjs.2019035 |
During the shut-in of deepwater wells, the formation of natural gas hydrate will significantly delay the migration of bubbles and affect the safe operation cycle of drilling. The bubble ascending dynamics considering the phase change of hydrate was studied. In the study, an indoor vertical cylinder was used to simulate the deepwater wellbore and to investigate the growth characteristics of hydrate film on the surface of methane bubbles.. A model was proposed which incorporated the hydrate lateral growth model and the hydrate film thickness prediction method considering natural convection heat transfer. The correlations between hydrate bubble deformation rate and Morton number, drag coefficient and Reynolds number were explored. A comprehensive prediction model of bubble ascending velocity in wellbore considering hydrate phase change under shut-in conditions was established based on the study, and the safe operation cycle of a well in the South China Sea was predicted and analyzed. The experimental and simulation results show that the newly established natural convection heat transfer model has higher prediction accuracy for the lateral growth rate and thickness of the hydrate film and that the deformation rate of hydrate bubble decreases with the Morton number. The drag coefficient decreases first and then increases gradually with the Reynolds number and the corresponding calculation formula was obtained through fitting. Studies suggest that the formation of hydrate on the surface of the bubbles can significantly reduce the ascending velocity of bubbles and prolong the safe operation cycle. However, the risk of hydrate blockage will increase as gas reaches the subsea wellhead, and pertinent well control measures should be taken according to the shut-in time.
[1] |
谢仁军, 刘书杰, 文敏, 等. 深水钻井溢流井控期间水合物生成主控因素[J]. 石油钻采工艺, 2015, 37(1): 64–67.
XIE Renjun, LIU Shujie, WEN Min, et al. Main control factor of hydrate generation during overflow well control period of deepwater drilling[J]. Oil Drilling & Production Technology, 2015, 37(1): 64–67.
|
[2] |
王金波, 王志远, 张伟国, 等. 南海深水海域避台风期间井控安全作业周期研究[J]. 石油钻探技术, 2013, 41(3): 51–55. doi: 10.3969/j.issn.1001-0890.2013.03.010
WANG Jinbo, WANG Zhiyuan, ZHANG Weiguo, et al. Well control safety operation cycle during typhoon at deep waters of South China Sea[J]. Petroleum Drilling Techniques, 2013, 41(3): 51–55. doi: 10.3969/j.issn.1001-0890.2013.03.010
|
[3] |
叶鹏, 刘道平, 张健. 悬浮气泡表面天然气水合物形成的特性研究[J]. 石油与天然气化工, 2013, 42(5): 468–472. doi: 10.3969/j.issn.1007-3426.2013.05.006
YE Peng, LIU Daoping, ZHANG Jian. Characteristics researches of natural gas hydrate growth on the suspended bubble surface[J]. Chemical Engineering of Oil & Gas, 2013, 42(5): 468–472. doi: 10.3969/j.issn.1007-3426.2013.05.006
|
[4] |
张健, 刘道平, 苏星, 等. 水滴和气泡表面气体水合物的生长特性对比[J]. 石油与天然气化工, 2013, 42(1): 37–41. doi: 10.3969/j.issn.1007-3426.2013.01.008
ZHANG Jian, LIU Daoping, SU Xing, et al. Comparative analysis of growth characteristics of hydrate formation on the surface of suspended water droplet and bubble[J]. Chemical Engineering of Oil & Gas, 2013, 42(1): 37–41. doi: 10.3969/j.issn.1007-3426.2013.01.008
|
[5] |
蔡婷. 天然气水合物在管道中沉积与崩塌的预测模型研究[J]. 钻采工艺, 2018, 41(6): 46–49. doi: 10.3969/J.ISSN.1006-768X.2018.06.14
CAI Ting. Model for predicting deposition and collapse of natural gas hydrate in pipeline[J]. Drilling & Production Technology, 2018, 41(6): 46–49. doi: 10.3969/J.ISSN.1006-768X.2018.06.14
|
[6] |
LIU Zheng, LI Hao, CHEN Litao, et al. A new model of and insight into hydrate film lateral growth along the gas-liquid interface considering natural convection heat transfer[J]. Energy & Fuels, 2018, 32(2): 2053–2063.
|
[7] |
BATCHELOR G K. An introduction to fluid dynamics[M]. Cambridge: Cambridge University Press, 2000: 211-219.
|
[8] |
DAVIES R M, TAYLOR G I. The mechanics of large bubbles rising through extended liquids and through liquids in tubes[J]. Proceedings of the Royal Society A, 1950, 200(1062): 375–390.
|
[9] |
WALLIS G B. The terminal speed of single drops or bubbles in an infinite medium[J]. International Journal of Multiphase Flow, 1974, 1(4): 491–511. doi: 10.1016/0301-9322(74)90003-2
|
[10] |
闫红杰, 赵国建, 刘柳, 等. 静止水中单气泡形状及上升规律的实验研究[J]. 中南大学学报(自然科学版), 2016, 47(7): 2513–2520.
YAN Hongjie, ZHAO Guojian, LIU Liu, et al. Experimental study on shape and rising behavior of single bubble in stagnant water[J]. Journal of Central South University (Science and Technology), 2016, 47(7): 2513–2520.
|
[11] |
BIGALKE N K, ENSTAD L I, REHDER G, et al. Terminal velocities of pure and hydrate coated CO2 droplets and CH4 bubbles rising in a simulated oceanic environment[J]. Deep Sea Research Part Ⅰ: Oceanographic Research Papers, 2010, 57(9): 1102–1110. doi: 10.1016/j.dsr.2010.05.008
|
[12] |
SATO Y, KIYONO F, OGASAWARA K, et al. An experimental study on the dynamics of a rising methane bubble covered with hydrates[J]. Journal of the Mining and Materials Processing Institute of Japan, 2013, 129(4): 124–131. doi: 10.2473/journalofmmij.129.124
|
[13] |
FISHENDEN M W, SAUNDERS O A. An introduction to heat transfer[M]. Oxford : Clarendon Press, 1950: 136-138.
|
[14] |
LEWANDOWSKI W M, RADZIEMSKA E, BUZUK M, et al. Free convection heat transfer and fluid flow above horizontal rectangular plates[J]. Applied Energy, 2000, 66(2): 177–197. doi: 10.1016/S0306-2619(99)00024-0
|
[15] |
SAVILLE D A, CHURCHILL S W. Laminar free convection in boundary layers near horizontal cylinders and vertical axisymmetric bodies[J]. Journal of Fluid Mechanics, 1967, 29(2): 391–399. doi: 10.1017/S0022112067000904
|
[16] |
PENG B Z, DANDEKAR A, SUN Changyu, et al. Hydrate film growth on the surface of a gas bubble suspended in water[J]. The Journal of Physical Chemistry B, 2007, 111(43): 12485–12493.
|
[17] |
WILKINSON P M, HARINGA H, VAN DIERENDONCK L L. Mass transfer and bubble size in a bubble column under pressure[J]. Chemical Engineering Science, 1994, 49(9): 1417–1427. doi: 10.1016/0009-2509(93)E0022-5
|
[18] |
UCHIDA T, EBINUMA T, KAWABATA J, et al. Microscopic observations of formation processes of clathrate-hydrate films at an interface between water and carbon dioxide[J]. Journal of Crystal Growth, 1999, 204(3): 348–356. doi: 10.1016/S0022-0248(99)00178-5
|
[19] |
MORI Y H. Estimating the thickness of hydrate films from their lateral growth rates: application of a simplified heat transfer model[J]. Journal of Crystal Growth, 2001, 223(1/2): 206–212.
|
[20] |
FREER E M, SELIM M S, SLOAN E D Jr. Methane hydrate film growth kinetics[J]. Fluid Phase Equilibria, 2001, 185(1/2): 65–75.
|
[21] |
MOCHIZUKI T, MORI Y H. Clathrate-hydrate film growth along water/hydrate-former phase boundaries-numerical heat-transfer study[J]. Journal of Crystal Growth, 2006, 290(2): 642–652.
|
[22] |
LI Shengli, SUN Changyu, LIU Bei, et al. Initial thickness measurements and insights into crystal growth of methane hydrate film[J]. AIChE Journal, 2013, 59(6): 2145–2154. doi: 10.1002/aic.13987
|
[1] | ZHANG Xinliang, JIN Lei, ZHANG Rui, ZHANG Guanlin, FENG Liying. Key Technologies for Casing Running with Double Floating Collars in Middle and Deep Horizontal Wells[J]. Petroleum Drilling Techniques, 2023, 51(6): 57-63. DOI: 10.11911/syztjs.2023053 |
[2] | WANG Qing, ZHANG Jiawei, SUN Minghao, JI Guodong, WANG Haige, SUN Xiaofeng. The Settlement Drag Coefficient of Gulong Shale Cuttings in Power-Law Fluids in Daqing Oilfield[J]. Petroleum Drilling Techniques, 2023, 51(2): 54-60. DOI: 10.11911/syztjs.2023006 |
[3] | YUAN Jianwei, LIU Meijia, LI Chao, WU Chunxin, MA Dong. Research on Boundary Correction Coefficient of Horizontal Wells in Narrow Channel Reservoirs[J]. Petroleum Drilling Techniques, 2023, 51(1): 86-90. DOI: 10.11911/syztjs.2022056 |
[4] | XU Xin, WANG Wei, HU Mingyi, LI Hui, FENG Yi. Comparison and Study over the Biot Coefficients Test Methods in Medium Porosity and Medium Permeability Sandstone Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(2): 109-114. DOI: 10.11911/syztjs.2018054 |
[5] | CUI Wenhao, SU Zubo, KANG Jian, HAN Guangshun, LYU Yiming, ZHU Hongzheng. Key Technology of Water Detection by Dragging the Pipe String in Multi-Stage Fractured Horizontal Well[J]. Petroleum Drilling Techniques, 2018, 46(1): 97-102. DOI: 10.11911/syztjs.2018014 |
[6] | LI Yunfeng, ZHOU Yan, HU Zhongzhi, ZHU Kuanliang, XU Xiaofeng. Development and Field Application of High Efficiency Drag and Torsion Reducing Tool[J]. Petroleum Drilling Techniques, 2017, 45(3): 83-87. DOI: 10.11911/syztjs.201703015 |
[7] | LI Dianwei, YANG Zhongfu, DI Baiying, CHEN Shaoyun, WANG Jianyan. Drag and Torque Reducing Techniques on S-Shaped Directional Wells of the Rumaila Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(5): 22-27. DOI: 10.11911/syztjs.201605004 |
[8] | Wang Jinbo, Wang Zhiyuan, Zhang Weiguo, Xie Hua, Sun Baojiang. Well Control Safety Operation Cycle during Typhoon at Deep Waters of South China Sea[J]. Petroleum Drilling Techniques, 2013, 41(3): 51-55. DOI: 10.3969/j.issn.1001-0890.2013.03.010 |
[9] | Qu Hai, Li Gensheng, Liu Ying. The Application of Dragged Multistage Hydrojet-Fracturing in Horizontal Well with Screen Pipe Completion[J]. Petroleum Drilling Techniques, 2012, 40(3): 83-86. DOI: 10.3969/j.issn.1001-0890.2012.03.017 |
[10] | Wu Lixin, Chen Ping, Zhu Xiaohua, Zhang Wenhua, Jia Yanjie, Li Jinhe. Contrast of Fatigue Failure Cycles of Drill String during Gas Drilling[J]. Petroleum Drilling Techniques, 2012, 40(1): 42-46. DOI: 10.3969/j.issn.1001-0890.2012.01.009 |
1. |
葛磊,杨春旭,郭兵,王志远,王子毓. 气侵后井底初始气泡平均直径预测模型实验研究. 石油钻探技术. 2023(02): 46-53 .
![]() | |
2. |
王红一,张浩. 基于深度学习的两相流气泡末速度预测. 现代电子技术. 2022(15): 69-72 .
![]() | |
3. |
霍宏博,张启龙,李金泽,张磊,王文. 海洋钻井平台压井管汇注乙二醇参数优化. 石油工业技术监督. 2021(01): 27-30 .
![]() | |
4. |
刘煌,李瑞景,汪周华,王庆文. 酸性天然气生成水合物条件实验测定与应用. 特种油气藏. 2021(05): 154-160 .
![]() | |
5. |
苏文杰,权珊珊,赵国斌,赵宾,李首东. 天然气气井钻井安全管理实效性分析. 化工设计通讯. 2020(05): 258+262 .
![]() | |
6. |
李文强,焦守华,唐珂,杨宜昂,曲文海,柴翔. 静水中单气泡运动特性实验研究. 原子能科学技术. 2020(09): 1652-1659 .
![]() | |
7. |
李庆超,程远方,邵长春. 允许适度坍塌的水合物储层最低钻井液密度. 断块油气田. 2019(05): 657-661 .
![]() | |
8. |
牛洪波,于政廉,孙菁,徐加放. 天然气水合物动力学抑制剂与水分子相互作用研究. 石油钻探技术. 2019(04): 29-34 .
![]() |