XIE Zhiqin. Physical Simulation Study of In-Situ Combustion by a Chemical Self-Propagating Igniter[J]. Petroleum Drilling Techniques, 2018, 46(3): 93-97. DOI: 10.11911/syztjs.2018060
Citation: XIE Zhiqin. Physical Simulation Study of In-Situ Combustion by a Chemical Self-Propagating Igniter[J]. Petroleum Drilling Techniques, 2018, 46(3): 93-97. DOI: 10.11911/syztjs.2018060

Physical Simulation Study of In-Situ Combustion by a Chemical Self-Propagating Igniter

More Information
  • Received Date: October 12, 2017
  • Revised Date: March 25, 2018
  • The technology of electric ignition and in-situ combustion for heavy oil reservoir suffers from the fact that it has a high ignition temperature and a low ignition success rate.A chemical self-propagating igniter was introduced to solve these problems.Its effect and influence factors were analyzed by physical simulation.According to the principle of self-propagating,the ignition agent was prepared with ammonium nitrate and citric acid as the main raw material,and the simulated core was prepared.The simulated ignition test was carried out on a simulated test device.The influence of the viscosity of crude oil,core porosity,oil saturation and water content of crude oil on the combustion of simulated core was analyzed through experiments.The results showed that the ignition temperature of self-propagating igniting agent was only 100-200℃,and the minimum temperature was 98℃.The ignition temperature of igniter increased with the increasing of viscosity of crude oil.The porosity of the core did not affect the ignition temperature,but the degree of combustion and the highest combustion temperature could increase with the increasing porosity of the core.The oil saturation did not affect the ignition temperature and the highest burning temperature of the crude oil,but the degree of the oil combustion would increase with the increasing of the oil saturation.The water content of crude oil had an effect on the ignition temperature,the oil’s highest temperature and the degree of combustion of the crude oil.The ignition temperature and the highest combustion temperature would lower with the declining water content of crude oil,but in contrast,the burning degree would increase.The result showed that self-propagating chemical ignition could ignite the crude oil safely and reliably and carry out thermal flooding.
  • [1]
    朱海琦.火驱电点火及其与其他点火方式的对比分析[J].内蒙古石油化工,2014,40(20):58-59. ZHU Haiqi.The comparison between fire-driven ignition and other ignition methods[J].Inner Mongolia Petrochemical Industry,2014,40(20):58-59.
    [2]
    袁士宝,孙希勇,蒋海岩,等.火烧油层点火室内实验分析及现场应用[J].油气地质与采收率,2012,19(4):53-55. YUAN Shibao,SUN Xiyong,JIANG Haiyan,et al.Ignition experimental analysis of in-situ combustion under condition of preheating[J].Petroleum Geology and Recovery Efficiency,2012,19(4):53-55.
    [3]
    谢志勤,贾庆升,蔡文斌,等.火烧驱油物理模型的研究及应用[J].石油机械,2002,30(8):4-6. XIE Zhiqin,JIA Qingsheng,CAI Wenbin,et al.Research and application of physical model of in-situ combustion[J].China Petroleum Machinery,2002,30(8):4-6.
    [4]
    PADYUKOV K L,LEVASHOV E A.Self-propagating high-temperature synthesis:a new method for the production of diamond-containing materials[J].Diamond Related Materials,1993,2(2/3/4):207-210.
    [5]
    TANG Chenglong,ZHANG Yingjia,HUANG Zuohua.Progress in combustion investigations of hydrogen enriched hydrocarbons[J].Renewable Sustainable Energy Reviews,2014,30(2):195-216.
    [6]
    SWITZER C,PIRONI P,GERHARD J I,et al.Self-sustaining smoldering combustion:a novel remediation process for non-aqueous-phase liquids in porous media[J].Environmental Science Technology,2009,43(15):5871-5877.
    [7]
    WU Dejian,SCHMIDT M,HUANG Xinyan,et al.Self-ignition and smoldering characteristics of coal dust accumulations in O2/N2 and O2/CO2 atmospheres[J].Proceedings of the Combustion Institute,2017,36(2):3195-3202.
    [8]
    TAO Mingyuan,HAN Dong,ZHAO Peng.An alternative approach to accommodate detailed ignition chemistry in combustion simulation[J].Combustion and Flame,2017,176:400-408.
    [9]
    RESTUCCIA F,PTAK N,REIN G.Self-heating behavior and ignition of shale rock[J].Combustion and Flame,2017,176:213-219.
    [10]
    LI Yao,ZHAO Jiupeng,JIANG Jiuxing,et al.Influence of oxygen pressure on combustion synthesis of ZnFe2O4[J].Materials Chemistry and Physics,2003,82(3):991-996.
    [11]
    杨德伟,王世虎,王弥康,等.火烧油层的室内实验研究[J].石油大学学报(自然科学版),2003,27(2):51-54. YANG Dewei,WANG Shihu,WANG Mikang,et al.Experimental study on in-situ combustion[J].Journal of the University of Petroleum,China(Edition of Natural Science),2003,27(2):51-54.
    [12]
    陈军斌,肖述琴,周芳德,等.火烧油层驱油特征的参数敏感性分析[J].应用力学学报,2003,20(1):18-23. CHEN Junbin,XIAO Shuqin,ZHOU Fangde,et al.The sensitivity analysis of parameters for in-situ combustion[J].Chinese Journal of Applied Mechanics,2003,20(1):18-23.
    [13]
    关文龙,蔡文斌,王世虎,等.郑408块火烧油层物理模拟研究[J].石油大学学报(自然科学版),2005,29(5):58-61. GUAN Wenlong,CAI Wenbin,WANG Shihu,et al.Physical modeling research of in-situ combustion in Zheng-408 fireflood pilot[J].Journal of the University of Petroleum,China(Edition of Natural Science),2005,29(5):58-61.
    [14]
    刘其成,程海清,张勇,等.火烧油层物理模拟相似原理研究[J].特种油气藏,2013,20(1):111-114. LIU Qicheng,CHENG Haiqing,ZHANG Yong,et al.Study on similarity principles of physical simulation of in-situ combustion[J].Special Oil Gas Reservoirs,2013,20(1):111-114.
    [15]
    蔡文斌,谢志勤,李友平,等.胜利王庄油田火烧驱油试验研究[J].石油天然气学报,2005,27(增刊2):397-398. CAI Wenbin,XIE Zhiqin,LI Youping,et al.Experiment of insitu combustion in Shengli Wangzhuang Oilfield[J].Journal of Oil Gas Technology,2005,27(supplement 2):397-398.
    [16]
    柴利文,金兆勋.中深厚层稠油油藏火烧油层试验研究[J].特种油气藏,2010,17(3):67-69. CHAI Liwen,JIN Zhaoxun.Pilot study of in situ combustion for mid-deep thick heavy oil reservoir[J].Special Oil and Gas Reservoirs,2010,17(3):67-69.
  • Related Articles

    [1]YAO Jun, WANG Chunqi, HUANG Zhaoqin, YANG Yongfei, SUN Hai, ZHANG Lei. Digital Core Construction Methods for High Stress in Deep and Ultra-Deep Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2024, 52(2): 38-47. DOI: 10.11911/syztjs.2024039
    [2]WANG Qinghui, ZHU Ming, FENG Jin, GUAN Yao, HOU Boheng. A Method for Predicting Productivity of Sandstone Reservoirs Based on Permeability Synthesis Technology[J]. Petroleum Drilling Techniques, 2021, 49(6): 105-112. DOI: 10.11911/syztjs.2021122
    [3]ZHOU Peng, DU Xiaoyou, CAO Yanfeng, YU Jifei, JIANG Haiwei, XUE Qilong. Experimental Research on Permeability Enhancement and Plug Removal by Means of an Electric Explosion Shock Wave[J]. Petroleum Drilling Techniques, 2020, 48(2): 98-103. DOI: 10.11911/syztjs.2020033
    [4]LI Zifeng, ZHENG Yiqing. Discussion on a New Methods for the Characterization of the Swelling and Compression in Porous Rocks in Oil and Gas Reservoirs[J]. Petroleum Drilling Techniques, 2018, 46(3): 1-6. DOI: 10.11911/syztjs.2018066
    [5]ZHU Linqi, ZHANG Chong, HU Jia, WEI Yang, GUO Cong. An NMR Logging Permeability Evaluation Method Based on the Representative Elementary Volume Model[J]. Petroleum Drilling Techniques, 2016, 44(4): 120-126. DOI: 10.11911/syztjs.201604021
    [6]Li Rongqiang, Gao Ying, Yang Yongfei, Li Yang, Yao Jun. Experimental Study on the Pressure Sensitive Effects of Cores Based on CT Scanning[J]. Petroleum Drilling Techniques, 2015, 43(5): 37-43. DOI: 10.11911/syztjs.201505007
    [7]Zhou Wensheng, Xiong Yu, Xu Hongguang, Zhang Wei, Wang Shuai. Physical Properties and Seepage Characteristics of Unconsolidated Sandstone under Re-Compaction[J]. Petroleum Drilling Techniques, 2015, 43(4): 118-123. DOI: 10.11911/syztjs.201504021
    [8]Guo Shenglai, Li Jianhua, Bu Yuhuan. Effect of Physical and Chemical Excitation on Slag Activity under Low Temperature[J]. Petroleum Drilling Techniques, 2013, 41(3): 31-34. DOI: 10.3969/j.issn.1001-0890.2013.03.006
    [9]Chen Zhaohui, Xie Yiting, Deng Yong. Experimental Study on Sanding Stress Sensitivity in Unconsolidated Sandstone Reservoirs[J]. Petroleum Drilling Techniques, 2013, 41(1): 61-64. DOI: 10.3969/j.issn.1001-0890.2013.01.012
    [10]Xu Chengyuan, Kang Yili, You Lijun, Wang Mingwei, Li Daqi. Influential Factors on Permeability Recovery during Flowback of Fractured Reservoirs[J]. Petroleum Drilling Techniques, 2012, 40(6): 17-21. DOI: 10.3969/j.issn.1001-0890.2012.06.004
  • Cited by

    Periodical cited type(24)

    1. 高元,李小江,刘仍光. 超高温井固井水泥浆体系研究与应用. 钻探工程. 2025(01): 109-114 .
    2. 李小江,王越洋,肖京男,魏浩光,杨睿月. 硅酸盐水泥石超高温干热环境热损伤规律. 钻井液与完井液. 2025(02): 247-254 .
    3. 李盼盼,李明泽,徐萍,白永泰,吕宝玉,王璐. 石英砂细度和掺量对G级油井水泥浆体系性能的影响. 水泥. 2024(01): 14-17 .
    4. 肖京男,李小江,周仕明,魏浩光,杨红歧. 干热岩超高温防衰退水泥浆体系及应用. 钻井液与完井液. 2024(01): 92-97 .
    5. 邱康,崔强,熊振宇,王颖,范鸿飞. 莺琼盆地高温高含CO_2环境水泥石腐蚀规律及机理研究. 海洋石油. 2024(02): 80-83 .
    6. 赵峰,曾雪玲,龙丹,古安林,张凌志,王佳,魏雪琦. 锆英石掺量对加砂油井水泥高温性能的影响研究. 水泥. 2024(07): 13-18 .
    7. 徐大伟,汪晓静,徐春虎,魏浩光,常连玉. 且深1井盐层尾管超高温高密度固井水泥浆技术. 钻井液与完井液. 2024(05): 622-629 .
    8. 赵琥,马春旭,宋维凯,田野,邹亦玮,孙超. 空心微珠低密度水泥浆在高温下的水化特性. 钻井液与完井液. 2024(05): 654-660 .
    9. 袁彬,赵清立,徐璧华,冯青豪,杨川. 南海180℃超高温CO_2环境下水泥石强度衰退机理. 材料导报. 2024(S2): 170-174 .
    10. 赵昆鹏,王涛,郭春,罗阳利,韦庭丛,梅开元,张春梅,赵峰,程小伟. 高温下赤泥与硅粉协同强化固井水泥石力学性能. 中国粉体技术. 2023(02): 74-80 .
    11. 徐小峰,宋巍,杨燕,李祥银,周岩,冯福平,韩旭,刘圣源. 页岩储层水平井固井水泥浆体系应用研究进展. 科学技术与工程. 2023(17): 7161-7173 .
    12. 党冬红,刘宁泽,王丹,梅开元,程小伟,孙兴嘉. 干热岩工况下水泥高温劣化性能的调控措施. 钻井液与完井液. 2023(03): 368-375 .
    13. 赵峰,曾雪玲,龙丹,古安林,喻庆华. 超高温固井水泥添加剂研选及工程性能评价. 钻采工艺. 2023(04): 131-136 .
    14. 杨雨,汪启龙,杨东,瞿勇,张浩,王凯鹏. 导热填料对地热井固井材料性能及结构的影响. 钻采工艺. 2022(01): 59-64 .
    15. 何立成. 胜利油田沙河街组页岩油水平井固井技术. 石油钻探技术. 2022(02): 45-50 . 本站查看
    16. 侯海欧. 稠油热采井固井低密度水泥浆体系研究与应用. 中国石油和化工标准与质量. 2022(07): 111-113 .
    17. 周崇峰,费中明,李德伟,赵江波,蒋世伟,刘慧婷,徐明. 一种新型超高温固井水泥石抗强度衰退材料. 钻井液与完井液. 2022(01): 71-75 .
    18. 郤一臻,赵福金,荆京,祁国华,张勃. 山西干热岩GR1井高温固井技术研究与实践. 钻探工程. 2022(06): 42-47 .
    19. 杨仲涵,罗鸣,陈江华,许发宾,徐靖. 莺歌海盆地超高温高压井挤水泥承压堵漏技术. 石油钻探技术. 2020(03): 47-51 . 本站查看
    20. 李全双,王治国,邹书强. 适用于干热岩固井抗高温高强度水泥浆体系研究. 中国石油和化工标准与质量. 2020(10): 164-167+169 .
    21. 张华,靳建洲,刘明涛,肖云峰,张晓兵,郭锦棠,张同颖. 稠油热采井抗350℃高温硅酸盐基水泥浆. 钻井液与完井液. 2020(03): 363-366 .
    22. 耿晨梓,姚晓,代丹,黎学年,姜涛,闫联国,吴学超. SiO_2晶态物性对高温水泥石力学性能的影响. 钻井液与完井液. 2020(06): 777-783 .
    23. 于永金,丁志伟,张弛,张华,郭锦棠. 抗循环温度210℃超高温固井水泥浆. 钻井液与完井液. 2019(03): 349-354 .
    24. 马志亮,郝红永,谢志涛,翟晓鹏,张瀚之. 微硅砂含量对热采井固井水泥强度影响研究. 当代化工研究. 2019(09): 72-74 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (4842) PDF downloads (7361) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return