HOU Xutian, ZHAO Xiangyang, MENG Yingfeng, YANG Shunhui, LI Gao, LIU Wenchen. Liquid-Liquid Gravity Displacement Test Based on Experimental Apparatus for Real Fractures[J]. Petroleum Drilling Techniques, 2018, 46(1): 30-36. DOI: 10.11911/syztjs.2018036
Citation: HOU Xutian, ZHAO Xiangyang, MENG Yingfeng, YANG Shunhui, LI Gao, LIU Wenchen. Liquid-Liquid Gravity Displacement Test Based on Experimental Apparatus for Real Fractures[J]. Petroleum Drilling Techniques, 2018, 46(1): 30-36. DOI: 10.11911/syztjs.2018036

Liquid-Liquid Gravity Displacement Test Based on Experimental Apparatus for Real Fractures

More Information
  • Received Date: November 09, 2017
  • Revised Date: January 11, 2018
  • In order to understand the actual flow pattern of fluids inside fractures during liquid-liquid displacement,visualized displacement tests for drilling fluid and simulated formation fluid were conducted with a visualized apparatus for wellbore-formation coupled flow based on the liquid-liquid gravity displacement mechanism of fractured formations.This apparatus could simulate real fracture space by reference to fractures scanned in field outcrops.The affecting rules of fracture width,wellhead back pressure,density of drilling fluid,viscosity of drilling fluid and viscosity of formation fluid on the liquid-liquid displacement amount in volume-constant formations were analyzed,and further the relationships among the displacement amount and all influential factors were regressed on the basis of the dimension analysis theory.The results indicated that with the increase of fracture width,wellhead back pressure and density of drilling fluid,the displacement rate and amount would be increased;while with the increase of viscosity of drilling fluid and formation fluid,the displacement rate and amount would be reduced;under the same equivalent circulating density,drilling fluids with lower density and back pressure could produce less displacement amount.These results suggest that the pressure difference between the two ends of fractures is the key reason for the displacement,which can be traced to the differences between drilling fluid and formation fluid in density and viscosity.The research results can provide guidance for the control of liquid-liquid gravity displacement in fractured formations.
  • [1]
    马宗金.总结经验教训提高天然气井钻井井控能力[J].钻采工艺,2004,27(4):1-5. MA Zongjin.Summing up experience to improve well control ability of natural gas well[J].Drilling Production Technology,2004,27(4):1-5.
    [2]
    张志.裂缝性气藏重力置换溢流规律研究[D].成都:西南石油大学,2008. ZHANG Zhi.Research on the rule of gravity displacement in fracture gas reservoir[D].Chengdu:Southwest Petroleum University,2008.
    [3]
    舒刚,孟英峰,李皋,等.重力置换式漏喷同存机理研究[J].石油钻探技术,2011,39(1):6-11. SHU Gang,MENG Yingfeng,LI Gao,et al.Mechanism of mud loss and well kick due to gravity displacement[J].Petroleum Drilling Techniques,2011,39(1):6-11.
    [4]
    贾红军.钻遇裂缝性地层溢漏同存机理研究[D].成都:西南石油大学,2013. JIA Hongjun.Mechanism study on well kick accompanied with lost circulation during drilling fractured formation[D].Chengdu:Southwest Petroleum University,2013.
    [5]
    赵向阳,孟英峰,侯绪田,等.沥青质稠油与钻井液重力置换规律与控制技术[J].石油钻采工艺,2016,38(5):622-627. ZHAO Xiangyang,MENG Yingfeng,HOU Xutian,et al.Pattern and control of gravity displacement between asphaltic heavy oil and drilling fluid[J].Oil Drilling Production Technology,2016,38(5):622-627.
    [6]
    路保平,侯绪田,邢树宾.伊朗雅达油田沥青层置换机制与压力波动分析[J].中国石油大学学报(自然科学版),2017,41(6):88-93. LU Baoping,HOU Xutian,XING Shubin.Asphalt displacement mechanism and pore pressure fluctuation in Yadavaran Oilfield,Iran[J].Journal of China University of Petroleum(Edition of Natural Sciences),2017,41(6):88-93.
    [7]
    CHANG L,GAO Y.A simple numerical method for contact analysis of rough surfaces[J].Journal of Tribology-Transactions of the ASME,1999,121(3):425-432.
    [8]
    LOMIZE G M.Flow in fracturedrock(in Russian)[M].Moscow:Gosemergoizdat,1951:127-129.
    [9]
    LOUIS C,MAINI Y N.Determination of in-situ hydraulic parameters in jointedrock[J].International Society of Rock Mechanics Proceedings,1970,1:1-19.
    [10]
    DYKE C G,WU B,MILTON-TAYLER D.Advances incharacterising natural fracture permeability from mud log data[J].SPE Formation Evaluation,1995,10(3):160-166.
    [11]
    MAJIDI R,MISKA S Z,YU M,et al.Quantitative analysis of mud losses in naturally fractured reservoirs:the effect ofrheology[J].SPE Drilling Completion,2010,25(4):509-517.
  • Cited by

    Periodical cited type(6)

    1. 张瑾,李风,郭志永,冷传基,叶凯旋. 封隔器胶筒高温密封性能实验装置. 化工设计通讯. 2021(01): 24-25+39 .
    2. 余涛,黎文才,康金成,李世民,吴坤琪. 300%扩张比抗H_2S腐蚀堵水桥塞研制及应用. 石油矿场机械. 2020(05): 65-69 .
    3. 杨同玉. 可提出式插管封隔器关键技术及现场应用. 断块油气田. 2017(02): 289-292 .
    4. 邵志香,马兰荣,朱和明,谷磊,薛占峰,廖洪千. 液压压胀式尾管顶部封隔器研制与试验. 石油矿场机械. 2017(06): 63-67 .
    5. 刘阳,秦金立. 无骨架内衬扩张式封隔器的研制与现场试验. 石油钻探技术. 2017(05): 68-72 . 本站查看
    6. 张猛,魏斌. 油气田井下封隔器胶筒橡胶研究进展. 特种橡胶制品. 2017(06): 74-77 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (4399) PDF downloads (3694) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return