LI Mingyu, KE Shizhen, KANG Zhengming, LI Xin, NI Weining. Influence Factors of Measured Signal Intensity and the Response Characteristics of the Toroidal Coil Excitation LWD Laterolog Instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128-134. DOI: 10.11911/syztjs.2018025
Citation: LI Mingyu, KE Shizhen, KANG Zhengming, LI Xin, NI Weining. Influence Factors of Measured Signal Intensity and the Response Characteristics of the Toroidal Coil Excitation LWD Laterolog Instrument[J]. Petroleum Drilling Techniques, 2018, 46(1): 128-134. DOI: 10.11911/syztjs.2018025

Influence Factors of Measured Signal Intensity and the Response Characteristics of the Toroidal Coil Excitation LWD Laterolog Instrument

More Information
  • Received Date: October 19, 2017
  • Revised Date: January 12, 2018
  • Compared with the traditional electrode resistivity LWD instrument,the toroidal coil excitation LWD laterolog instrument has signifycant advantages of wear resistance and less process difficulty.However,there is little theoretical research on this instrument in China.Based on the 3D finite element method,the logging response characteristics of the toroidal coil excitation LWD laterolog tool were studied,which analyzed the influence of instrument structural parameters on measured signal intensity.The simulation results indicated that measured signal intensity was positively correlated with the distance of receiving coils,and the longer the source spacing of the instrument and the bit sub,the weaker the measured signal intensity.Based on the simulation results,the simulation parameters were optimized.Researchers studied the detection characteristics of the instrument under different formation resistivity contrast,as well as the logging response characteristics of the instrument in deviated wells with different inclinations and surrounding rocks.Compared with the cable laterolog tool,the toroidal coil excitation LWD laterolog tool has a shallower detection depth,but it can meet the requirements of LWD.The research results are significant and can be used to guide the structural parameter design and the research on logging interpretation methods of toroidal coil excitation LWD laterolog instrument.
  • [1]
    HORSTMANN M,SUN K,BERGER P,et al.Resistivity anisotropy and formation dip evaluation in vertical and low angle wells using LWD directional electromagnetic measurements[R].SPWLA-2015-LLLL,2015.
    [2]
    FANG S,MERCHANT A,HART E,et al.Determination of intrinsic dip and azimuth from LWD azimuthal-propagation resistivity measurements in anisotropic formations[R].SPE 116123,2010.
    [3]
    许巍,柯式镇,李安宗,等.随钻电磁波测井仪器结构影响的三维有限元模拟[J].中国石油大学学报:自然科学版,2016,40(6):50-56. XU Wei,KE Shizhen,LI Anzong,et al.Structural effects analysis of an electromagnetic wave propagation resistivity LWD tool by 3D finite element method[J].Journal of China University of Petroleum (Edition of Natural Sciences),2016,40(6):50-56.
    [4]
    朱军,杨善森,刘刚,等.随钻双侧向电阻率测井响应数值模拟分析[J].测井技术,2017,41(2):146-150. ZHU Jun,YANG Shansen,LIU Gang,et al.Numerical analysis of logging responses for dual laterolog resistivity logging-while-drilling tool[J].Well Logging Technology,2017,41(2):146-150.
    [5]
    ARPS J J.Inductive resistivity guard logging apparatus including toroidal coils mounted on a conductive stem:US3305771[P].1967-02-21.
    [6]
    康正明,柯式镇,李新,等.钻头电阻率测井仪器探测特性研究[J].石油科学通报,2017,2(4):457-465. KANG Zhengming,KE Shizhen,LI Xin,et al.The detection characteristics study of the at-bit resistivity logging tool[J].Petroleum Science Bulletin,2017,2(4):457-465.
    [7]
    BONNER S,BAGERSH A,CLARK B,et al.A new generation of electrode resistivity measurements for formation evaluation while drilling[R].SPWLA-1994-OO,1994.
    [8]
    PRAMMER M G,MORYS M,KNIZHNIK S,et al.A high-resolution LWD resistivity imaging tool:field testing in vertical and highly deviated boreholes[J].Petrophysics,2009,50(1):49-66.
    [9]
    ALLOUCHE M,CHOW S,DUBOURG I,et al.High-resolution images and formation evaluation in slim holes from a new logging-while-drilling azimuthal laterolog device[R].SPE 131513,2010.
    [10]
    GIANZERO S,CHEMALI R,LIN Y,et al.A new resistivity tool for measurement-while-drilling[R].SPWLA-1985-A,1985.
    [11]
    BITTAR M S,HU G.The effects of rock anisotropy on LWD toroidal resistivity sensors[R].SPWLA-2004-WW,2004.
    [12]
    李安宗,李启明,朱军,等.方位侧向电阻率成像随钻测井仪探测特性数值模拟分析[J].测井技术,2014,38(4):407-410. LI Anzong,LI Qiming,ZHU Jun,et al.Numerical analysis of logging response for LWD azimuthal laterolog resistivity imaging tool[J].Well Logging Technology,2014,38(4):407-410.
    [13]
    BORGHI M,PIANI E,BARBIERI E,et al.New logging-while-drilling azimuthal resistivity and high resolution imaging in slim holes[R].OMC-2011-167,2011.
    [14]
    李启明,李安宗,孔亚娟,等.侧向类随钻测井仪器垂直分辨率分析[J].测井技术,2014,38(5):541-546. LI Qiming,LI Anzong,KONG Jane,et al.On vertical resolution of a laterolog-type logging while drilling tool[J].Well Logging Technology,2014,38(5):541-546.
    [15]
    史盼盼.水平井中的阵列感应测井响应特性研究[D].西安:西安石油大学,2016. SHI Panpan.The study on response characteristics of the array induction logging in the horizontal wells[D].Xi’an:Xi’an Shiyou University,2016.
    [16]
    童茂松,宋建华.0.2m分辨率双侧向测井仪器数值模拟[J].地球物理学进展,2014,29(5):2251-2257. TONG Maosong,SONG Jianhua.Numeric simulation of 0.2m vertical-resolution dual laterolog tool[J].Progress in Geophysis,2014,29(5):2251-2257.
    [17]
    倪卫宁,张晓彬,万勇,等.随钻方位电磁波电阻率测井仪分段组合线圈系设计[J].石油钻探技术,2017,45(2):115-120. NI Weining,ZHANG Xiaobin,WAN Yong,et al.The design of the coil system in LWD tools based on azimuthal electromagnetic-wave resistivity combined with sections[J].Petroleum Drilling Techniques,2017,45(2):115-120.
    [18]
    陈亮.斜井、水平井双侧向测井响应三维有限元数值分析[D].杭州:浙江大学,2008. CHEN Liang.Simulation of duallaterolog response in divate and horizontal wells with 3D finite element method[D].Hangzhou:Zhejiang University,2008.
    [19]
    杨震,肖红兵,李翠.随钻方位电磁波仪器测量精度对电阻率及界面预测影响分析[J].石油钻探技术,2017,45(4):115-120. YANG Zhen,XIAO Hongbing,LI Cui.Impacts of accuracy of azimuthal electromagnetic logging-while-drilling on resistivity and interface prediction[J].Petroleum Drilling Techniques,2017,45(4):115-120.
    [20]
    杨震,文艺,肖红兵.随钻方位电磁波仪器探测电阻率各向异性新方法[J].石油钻探技术,2016,44(3):115-120. YANG Zhen,WEN Yi,XIAO Hongbing.A new method of detecting while drilling resistivity anisotropy with azimuthal electromagnetic wave tools[J].Petroleum Drilling Techniques,2016,44(3):115-120.
    [21]
    李勇华,杨锦舟,杨震,等.随钻电阻率地层边界响应特征分析及应用[J].石油钻探技术,2016,44(6):111-116. LI Yonghua,YANG Jinzhou,YANG Zhen,et al.The analysis and application of formation interface response characteristics of the resistivity LWD tool[J].Petroleum Drilling Techniques,2016,44(6):111-116.
  • Cited by

    Periodical cited type(9)

    1. 王彬,李琼玉,吕喜林,梁池,程晓伟,杨永朋. 无水改性乙二醇基速溶压裂液研制及应用. 油气井测试. 2024(05): 34-41 .
    2. 凃宏俊,周明,李彤彤. 自修复水凝胶的研究进展及油气田应用. 西南石油大学学报(自然科学版). 2023(01): 71-80 .
    3. 李源流,高兴军,侯浩,王延,弓虎军. 低碳烃无水压裂液体系构建及性能评价. 钻采工艺. 2023(01): 126-131 .
    4. 匡立新. 新型铝离子无水压裂液的制备及其性能. 石油地质与工程. 2022(01): 81-86 .
    5. 魏志毅,张金泽,公证,刘崧达,刘佳音,李家豪,范海明. 双烷基脲稠化烃基压裂液的制备及其流变特性. 中国石油大学学报(自然科学版). 2022(04): 123-129 .
    6. 蒋廷学,左罗,黄静. 少水压裂技术及展望. 石油钻探技术. 2020(05): 1-8 . 本站查看
    7. 王满学,何静,王永炜. 国内烃基无水压裂液技术研究与应用进展. 钻井液与完井液. 2018(06): 1-7 .
    8. 刘晨,王凯,耿艳宏,王泰超,周文胜,邱凌. 清洁压裂液破胶液驱油体系实验研究. 断块油气田. 2017(01): 96-100 .
    9. 王满学,何静,王永炜. 耐高温低碳烃无水压裂液室内研究. 石油钻探技术. 2017(04): 93-96 . 本站查看

    Other cited types(2)

Catalog

    Article Metrics

    Article views (4431) PDF downloads (3977) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return